URL
https://opencores.org/ocsvn/fpu100/fpu100/trunk
Subversion Repositories fpu100
[/] [fpu100/] [branches/] [avendor/] [post_norm_div.vhd] - Rev 27
Go to most recent revision | Compare with Previous | Blame | View Log
------------------------------------------------------------------------------- -- -- Project: <Floating Point Unit Core> -- -- Description: post-normalization entity for the division unit ------------------------------------------------------------------------------- -- -- 100101011010011100100 -- 110000111011100100000 -- 100000111011000101101 -- 100010111100101111001 -- 110000111011101101001 -- 010000001011101001010 -- 110100111001001100001 -- 110111010000001100111 -- 110110111110001011101 -- 101110110010111101000 -- 100000010111000000000 -- -- Author: Jidan Al-eryani -- E-mail: jidan@gmx.net -- -- Copyright (C) 2006 -- -- This source file may be used and distributed without -- restriction provided that this copyright statement is not -- removed from the file and that any derivative work contains -- the original copyright notice and the associated disclaimer. -- -- THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY -- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED -- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS -- FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR -- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, -- INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES -- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE -- GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR -- BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF -- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT -- OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -- POSSIBILITY OF SUCH DAMAGE. -- library ieee ; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_misc.all; library work; use work.fpupack.all; entity post_norm_div is port( clk_i : in std_logic; opa_i : in std_logic_vector(FP_WIDTH-1 downto 0); opb_i : in std_logic_vector(FP_WIDTH-1 downto 0); qutnt_i : in std_logic_vector(FRAC_WIDTH+3 downto 0); rmndr_i : in std_logic_vector(FRAC_WIDTH+3 downto 0); exp_10_i : in std_logic_vector(EXP_WIDTH+1 downto 0); sign_i : in std_logic; rmode_i : in std_logic_vector(1 downto 0); output_o : out std_logic_vector(FP_WIDTH-1 downto 0); ine_o : out std_logic ); end post_norm_div; architecture rtl of post_norm_div is -- input&output register signals signal s_opa_i, s_opb_i : std_logic_vector(FP_WIDTH-1 downto 0); signal s_expa, s_expb : std_logic_vector(EXP_WIDTH-1 downto 0); signal s_qutnt_i, s_rmndr_i : std_logic_vector(FRAC_WIDTH+3 downto 0); signal s_r_zeros : std_logic_vector(5 downto 0); signal s_exp_10_i : std_logic_vector(EXP_WIDTH+1 downto 0); signal s_sign_i : std_logic; signal s_rmode_i : std_logic_vector(1 downto 0); signal s_output_o : std_logic_vector(FP_WIDTH-1 downto 0); signal s_ine_o, s_overflow : std_logic; signal s_opa_dn, s_opb_dn : std_logic; signal s_qutdn : std_logic; signal s_exp_10b : std_logic_vector(9 downto 0); signal s_shr1, s_shl1 : std_logic_vector(5 downto 0); signal s_shr2 : std_logic; signal s_expo1, s_expo2, s_expo3 : std_logic_vector(8 downto 0); signal s_fraco1 : std_logic_vector(26 downto 0); signal s_frac_rnd, s_fraco2 : std_logic_vector(24 downto 0); signal s_guard, s_round, s_sticky, s_roundup : std_logic; signal s_lost : std_logic; signal s_op_0, s_opab_0, s_opb_0 : std_logic; signal s_infa, s_infb : std_logic; signal s_nan_in, s_nan_op, s_nan_a, s_nan_b : std_logic; signal s_inf_result: std_logic; begin -- Input Register process(clk_i) begin if rising_edge(clk_i) then s_opa_i <= opa_i; s_opb_i <= opb_i; s_expa <= opa_i(30 downto 23); s_expb <= opb_i(30 downto 23); s_qutnt_i <= qutnt_i; s_rmndr_i <= rmndr_i; s_exp_10_i <= exp_10_i; s_sign_i <= sign_i; s_rmode_i <= rmode_i; end if; end process; -- Output Register process(clk_i) begin if rising_edge(clk_i) then output_o <= s_output_o; ine_o <= s_ine_o; end if; end process; -- qutnt_i -- 26 25 3 -- | | | -- h fffffffffffffffffffffff grs --*** Stage 1 **** -- figure out the exponent and howmuch the fraction has to be shiftd right/left s_opa_dn <= '1' when or_reduce(s_expa)='0' and or_reduce(opa_i(22 downto 0))='1' else '0'; s_opb_dn <= '1' when or_reduce(s_expb)='0' and or_reduce(opb_i(22 downto 0))='1' else '0'; s_qutdn <= not s_qutnt_i(26); s_exp_10b <= s_exp_10_i - ("000000000"&s_qutdn); process(clk_i) variable v_shr, v_shl : std_logic_vector(9 downto 0); begin if rising_edge(clk_i) then if s_exp_10b(9)='1' or s_exp_10b="0000000000" then v_shr := ("0000000001" - s_exp_10b) - s_qutdn; v_shl := (others =>'0'); s_expo1 <= "000000001"; elsif s_exp_10b(8)='1' then v_shr := (others =>'0'); v_shl := (others =>'0'); s_expo1 <= s_exp_10b(8 downto 0); else v_shr := (others =>'0'); v_shl := "000000000"& s_qutdn; s_expo1 <= s_exp_10b(8 downto 0); end if; if v_shr(6)='1' then s_shr1 <= "111111"; else s_shr1 <= v_shr(5 downto 0); end if; s_shl1 <= v_shl(5 downto 0); end if; end process; -- *** Stage 2 *** -- Shifting the fraction and rounding -- shift the fraction process(clk_i) begin if rising_edge(clk_i) then if s_shr1 /= "000000" then s_fraco1 <= shr(s_qutnt_i, s_shr1); else s_fraco1 <= shl(s_qutnt_i, s_shl1); end if; end if; end process; s_expo2 <= s_expo1 - "000000001" when s_fraco1(26)='0' else s_expo1; s_r_zeros <= count_r_zeros(s_qutnt_i); s_lost <= '1' when (s_shr1+("00000"&s_shr2)) > s_r_zeros else '0'; -- ***Stage 3*** -- Rounding s_guard <= s_fraco1(2); s_round <= s_fraco1(1); s_sticky <= s_fraco1(0) or or_reduce(s_rmndr_i); s_roundup <= s_guard and ((s_round or s_sticky)or s_fraco1(3)) when s_rmode_i="00" else -- round to nearset even ( s_guard or s_round or s_sticky) and (not s_sign_i) when s_rmode_i="10" else -- round up ( s_guard or s_round or s_sticky) and (s_sign_i) when s_rmode_i="11" else -- round down '0'; -- round to zero(truncate = no rounding) s_frac_rnd <= ("0"&s_fraco1(26 downto 3)) + '1' when s_roundup='1' else "0"&s_fraco1(26 downto 3); s_shr2 <= s_frac_rnd(24); process(clk_i) begin if rising_edge(clk_i) then if s_shr2='1' then s_expo3 <= s_expo2 + "1"; s_fraco2 <= "0"&s_frac_rnd(24 downto 1); else s_expo3 <= s_expo2; s_fraco2 <= s_frac_rnd; end if; end if; end process; --- ---***Stage 4**** -- Output s_op_0 <= not ( or_reduce(s_opa_i(30 downto 0)) and or_reduce(s_opb_i(30 downto 0)) ); s_opab_0 <= not ( or_reduce(s_opa_i(30 downto 0)) or or_reduce(s_opb_i(30 downto 0)) ); s_opb_0 <= not or_reduce(s_opb_i(30 downto 0)); s_infa <= '1' when s_expa="11111111" else '0'; s_infb <= '1' when s_expb="11111111" else '0'; s_nan_a <= '1' when (s_infa='1' and or_reduce (s_opa_i(22 downto 0))='1') else '0'; s_nan_b <= '1' when (s_infb='1' and or_reduce (s_opb_i(22 downto 0))='1') else '0'; s_nan_in <= '1' when s_nan_a='1' or s_nan_b='1' else '0'; s_nan_op <= '1' when (s_infa and s_infb)='1' or s_opab_0='1' else '0';-- 0 / 0, inf / inf s_inf_result <= '1' when (and_reduce(s_expo3(7 downto 0)) or s_expo3(8))='1' or s_opb_0='1' else '0'; s_overflow <= '1' when s_inf_result='1' and (s_infa or s_infb)='0' and s_opb_0='0' else '0'; s_ine_o <= '1' when s_op_0='0' and (s_lost or or_reduce(s_fraco1(2 downto 0)) or s_overflow or or_reduce(s_rmndr_i))='1' else '0'; process(s_sign_i, s_expo3, s_fraco2, s_nan_in, s_nan_op, s_infa, s_infb, s_overflow, s_inf_result, s_op_0) begin if (s_nan_in or s_nan_op)='1' then s_output_o <= '1' & QNAN; elsif (s_infa or s_infb)='1' or s_overflow='1' or s_inf_result='1' then s_output_o <= s_sign_i & INF; elsif s_op_0='1' then s_output_o <= s_sign_i & ZERO_VECTOR; else s_output_o <= s_sign_i & s_expo3(7 downto 0) & s_fraco2(22 downto 0); end if; end process; end rtl;
Go to most recent revision | Compare with Previous | Blame | View Log