URL
https://opencores.org/ocsvn/ft816float/ft816float/trunk
Subversion Repositories ft816float
[/] [ft816float/] [trunk/] [rtl/] [positVerilog/] [positDivide.sv] - Rev 81
Go to most recent revision | Compare with Previous | Blame | View Log
// ============================================================================
// __
// \\__/ o\ (C) 2020 Robert Finch, Waterloo
// \ __ / All rights reserved.
// \/_// robfinch<remove>@finitron.ca
// ||
//
// positDivide.sv
// - posit number division function
// - parameterized width
//
// Parts of this code extracted from the PACoGen project:
// Copyright (c) 2019, Manish Kumar Jaiswal
// All rights reserved.
//
// BSD 3-Clause License
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// ============================================================================
import posit::*;
module positDivide(clk, ce, a, b, o, start, done, zero, inf);
localparam rs = $clog2(PSTWID-1)-1;
input clk;
input ce;
input [PSTWID-1:0] a;
input [PSTWID-1:0] b;
output reg [PSTWID-1:0] o;
input start;
output reg done;
output reg zero;
output reg inf;
localparam N = PSTWID;
localparam M = N-es;
localparam Bs = $clog2(N-1);
localparam NR_Iter = M > 88 ? 4 : M > 44 ? 3 : M > 22 ? 2 : M > 11 ? 1 : 0; // 2 for 32 bits, 1 for 16 bits, 0 for 8bits
localparam NRB = 2**NR_Iter;
localparam IW_MAX = 10; //Max intial approximation storage bit-width
localparam IW = 10;//(NRB == 1 ) ? M : (M/NRB*2 + ((M%NRB > 0) ? 1 : 0)); //(must be <= IW_MAX) 1/4th width of Mantissa: inverse width to be used in NR iterations multiplication
localparam AW_MAX = 11; //Max Address width of the intial approximation storage
localparam AW = 11;//(NRB == 1) ? M : (M/NRB*2 + ((M%NRB > 0) ? 1 : 0)); //Actual address width used for initial approximation (AW must be <= AW_MAX)
wire sa, sb, so;
wire [rs:0] rgma, rgmb;
wire rgsa, rgsb;
wire [es-1:0] expa, expb;
wire [M-1:0] siga, sigb;
wire zera, zerb;
wire infa, infb;
positDecompose #(PSTWID) u1 (
.i(a),
.sgn(sa),
.rgs(rgsa),
.rgm(rgma),
.exp(expa),
.sig(siga),
.zer(zera),
.inf(infa)
);
positDecompose #(PSTWID) u2 (
.i(b),
.sgn(sb),
.rgs(rgsb),
.rgm(rgmb),
.exp(expb),
.sig(sigb),
.zer(zerb),
.inf(infb)
);
wire [M:0] m1 = siga << 1;
wire [M:0] m2 = sigb << 1;
wire [15:0] m2_inv0_tmp;
assign so = sa ^ sb;
wire [Bs+1:0] argma = rgsa ? {2'b0,rgma} : -rgma;
wire [Bs+1:0] argmb = rgsb ? {2'b0,rgmb} : -rgmb;
generate begin : gDivLut
if (M < AW_MAX)
div_lut lut1 (.clk(clk), .ce(ce), .i({m2[M-1:0],{AW_MAX-M{1'b0}}}), .o(m2_inv0_tmp));
else if (M==AW_MAX)
div_lut lut1 (.clk(clk), .ce(ce), .i(m2[M-1:0]), .o(m2_inv0_tmp));
else if (M > AW_MAX)
div_lut lut1 (.clk(clk), .ce(ce), .i(m2[M-1:M-AW_MAX]), .o(m2_inv0_tmp));
end
endgenerate
wire [IW:0] m2_inv0;
assign m2_inv0 = m2_inv0_tmp[15:5];
wire [2*M+1:0] div_m;
wire [2*M+1:0] div_m4;
genvar i;
generate begin
wire [2*M+1:0] m2_inv [NR_Iter:0];
if (NR_Iter > 0) begin
assign m2_inv[0] = {1'b0,m2_inv0,{M-IW{1'b0}},{M{1'b0}}};
wire [2*M+1:0] m2_inv_X_m2 [NR_Iter-1:0];
wire [M+1:0] two_m2_inv_X_m2 [NR_Iter-1:0];
for (i = 0; i < NR_Iter; i=i+1) begin : NR_Iteration
assign m2_inv_X_m2[i] = {m2_inv[i][2*M:2*M-IW*(i+1)],{2*M-IW*(i+1)-M{1'b0}}} * m2;
assign two_m2_inv_X_m2[i] = {1'b1,{M{1'b0}}} - {1'b0,m2_inv_X_m2[i][2*M+1:M+3],|m2_inv_X_m2[i][M+2:0]};
assign m2_inv[i+1] = {m2_inv[i][2*M:2*M-IW*(i+1)],{M-IW*(i+1){1'b0}}} * {two_m2_inv_X_m2[i][M-1:0],1'b0};
end
end
else begin
assign m2_inv[0] = {1'b0,m2_inv0,{M{1'b0}}};
end
assign div_m4 = ~|sigb[M-2:0] ? {1'b0,m1,{M{1'b0}}} : m1 * m2_inv[NR_Iter][2*M:M];
end
endgenerate
delay #(.WID(PSTWID), .DEP(4)) ud4 (.clk(clk), .ce(ce), .i(div_m4), .o(div_m));
delay #(.WID(1),.DEP(5)) ud1 (.clk(clk), .ce(ce), .i(start), .o(done));
delay #(.WID(1),.DEP(5)) ud2 (.clk(clk), .ce(ce), .i(infa|infb), .o(inf));
delay #(.WID(1),.DEP(5)) ud3 (.clk(clk), .ce(ce), .i(zera|zerb), .o(zero));
wire div_m_udf = div_m[2*M+1];
wire [2*M+1:0] div_mN = ~div_m_udf ? div_m << 1'b1 : div_m;
//Exponent and Regime Computation
wire bin = (~|sigb[M-2:0] | div_m_udf) ? 0 : 1;
wire [Bs+es+1:0] div_e = {argma, expa} - {argmb, expb} - bin;// 1 + ~|mant2 + div_m_udf;
wire [es-1:0] e_o = div_e[es-1:0];
wire [Bs+es:0] exp_oN = div_e[es+Bs+1] ? -div_e[es+Bs:0] : div_e[es+Bs:0];
wire [Bs:0] r_o = (~div_e[es+Bs+1] || |(exp_oN[es-1:0])) ? exp_oN[Bs+es:es] + 1 : exp_oN[es+Bs:es];
//Exponent and Mantissa Packing
wire [2*N-1+3:0] tmp_o = {{N{~div_e[es+Bs+1]}},div_e[es+Bs+1],e_o,div_mN[2*M:2*M-(N-es-1)+1], div_mN[2*M-(N-es-1):2*M-(N-es-1)-1],|div_mN[2*M-(N-es-1)-2:0] };
//Including Regime bits in Exponent-Mantissa Packing
wire [3*N-1+3:0] tmp1_o = {tmp_o,{N{1'b0}}} >> (r_o[Bs] ? {Bs{1'b1}} : r_o);
//Rounding RNE : ulp_add = G.(R + S) + L.G.(~(R+S))
wire L = tmp1_o[N+4], G = tmp1_o[N+3], R = tmp1_o[N+2], St = |tmp1_o[N+1:0],
ulp = ((G & (R | St)) | (L & G & ~(R | St)));
wire [N-1:0] rnd_ulp = {{N-1{1'b0}},ulp};
wire [N:0] tmp1_o_rnd_ulp = tmp1_o[2*N-1+3:N+3] + rnd_ulp;
wire [N-1:0] tmp1_o_rnd = (r_o < M-2) ? tmp1_o_rnd_ulp[N-1:0] : tmp1_o[2*N-1+3:N+3];
//Final Output
wire [N-1:0] tmp1_oN = so ? -tmp1_o_rnd : tmp1_o_rnd;
always @(posedge clk)
if (ce) o <= inf|zero|(~div_mN[2*M+1]) ? {inf,{N-1{1'b0}}} : {so, tmp1_oN[N-1:1]};
endmodule
Go to most recent revision | Compare with Previous | Blame | View Log