URL
https://opencores.org/ocsvn/ft816float/ft816float/trunk
Subversion Repositories ft816float
[/] [ft816float/] [trunk/] [rtl/] [positVerilog/] [positFDPMul.sv] - Rev 78
Go to most recent revision | Compare with Previous | Blame | View Log
// ============================================================================
// __
// \\__/ o\ (C) 2020 Robert Finch, Waterloo
// \ __ / All rights reserved.
// \/_// robfinch<remove>@finitron.ca
// ||
//
// positFDPMul.sv
// - fused dot product posit number multiplier
// - parameterized width
// - perform a multiplication but retain all the product bits
// in the result in preparation for addition.
//
//
// This source file is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This source file is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// ============================================================================
import posit::*;
module positFDPMul(a, b, o, zero, inf);
input [PSTWID-1:0] a;
input [PSTWID-1:0] b;
output reg [PSTWID+es+(PSTWID-es)*2-1:0] o;
output zero;
output inf;
wire sa, sb, so;
wire [rs:0] rgma, rgmb;
wire [rs+1:0] rgm1, rgm2;
wire rgsa, rgsb;
wire [es-1:0] expa, expb;
wire [PSTWID-es-1:0] siga, sigb;
wire [(PSTWID-es)*2-1:0] prod;
wire zera, zerb;
wire infa, infb;
wire inf = infa|infb;
wire zero = zera|zerb;
positDecompose #(PSTWID) u1 (
.i(a),
.sgn(sa),
.rgs(rgsa),
.rgm(rgma),
.exp(expa),
.sig(siga),
.zer(zera),
.inf(infa)
);
positDecompose #(PSTWID) u2 (
.i(b),
.sgn(sb),
.rgs(rgsb),
.rgm(rgmb),
.exp(expb),
.sig(sigb),
.zer(zerb),
.inf(infb)
);
assign so = sa ^ sb; // compute sign
assign prod = siga * sigb;
// The product could have one or two whole digits before the point. Detect which it is
// and realign the product.
wire mo = prod[(PSTWID-es)*2-1];
wire [(PSTWID-es)*2-1:0] prod1 = mo ? prod : prod << 1'b1; // left align product
// Convert to the real +/- regime value
assign rgm1 = rgsa ? rgma : -rgma;
assign rgm2 = rgsb ? rgmb : -rgmb;
// Compute regime and exponent, include product alignment shift.
wire [rs+es+1:0] rxtmp = {rgm1,expa} + {rgm2,expb} + mo;
// Make a negative rx positive
wire [rs+es+1:0] rxtmp2c = rxtmp[rs+es+1] ? ~rxtmp + 2'd1 : rxtmp;
// Break out the exponent and regime portions
wire [es-1:0] exp = |es ? rxtmp[es-1:0] : 0;
// Take absolute value of regime portion
wire srxtmp = rxtmp[rs+es+1];
wire [rs:0] rgm = srxtmp ? -rxtmp[rs+es+1:es] : rxtmp[rs+es+1:es];
// Compute the length of the regime bit string, +1 for positive regime
wire [rs+es+1:0] rxn = rxtmp[rs+es+1] ? rxtmp2c : rxtmp;
wire [rs:0] rgml;
// Build expanded posit number:
// trim one leading bit off the product bits
// and keep guard, round bits, and create sticky bit
wire [PSTWID+es+(PSTWID-es)*2-2:0] tmp;
generate begin : gTmp
if (es > 0) begin
assign rgml = (~srxtmp | |(rxn[es-1:0])) ? rxtmp2c[rs+es:es] + 2'd1 : rxtmp2c[rs+es:es];
assign tmp = {{PSTWID-1{~srxtmp}},srxtmp,exp,prod1[(PSTWID-es)*2-2:0]};
end
else begin
assign rgml = (~srxtmp) ? rxtmp2c[rs+es:es] + 2'd1 : rxtmp2c[rs+es:es];
assign tmp = {{PSTWID-1{~srxtmp}},srxtmp,prod1[(PSTWID-es)*2-2:0]};
end
end
endgenerate
wire [PSTWID+es+(PSTWID-es)*2-2:0] tmp1 = tmp << (PSTWID-rgml-1);
wire [PSTWID+es+(PSTWID-es)*2-1:0] abstmp = so ? {1'b1,-tmp1} : {1'b0,tmp1};
always @*
casez({zero,inf})
2'b1?: o = {PSTWID+es+(PSTWID-es)*2-2{1'b0}};
2'b01: o = {1'b1,{PSTWID+es+(PSTWID-es)*2-2-1{1'b0}}};
default: o = abstmp;
endcase
endmodule
Go to most recent revision | Compare with Previous | Blame | View Log