URL
https://opencores.org/ocsvn/ft816float/ft816float/trunk
Subversion Repositories ft816float
[/] [ft816float/] [trunk/] [rtl/] [verilog/] [fpMul.v] - Rev 6
Go to most recent revision | Compare with Previous | Blame | View Log
// ============================================================================ // __ // \\__/ o\ (C) 2006-2016 Robert Finch, Stratford // \ __ / All rights reserved. // \/_// robfinch<remove>@finitron.ca // || // // This source file is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This source file is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // // fpMul.v // - floating point multiplier // - two cycle latency // - can issue every clock cycle // - parameterized width // - IEEE 754 representation // // Floating Point Multiplier // // Properties: // +-inf * +-inf = -+inf (this is handled by exOver) // +-inf * 0 = QNaN // // ============================================================================ // module fpMul (clk, ce, a, b, o, sign_exe, inf, overflow, underflow); parameter WID = 32; localparam MSB = WID-1; localparam EMSB = WID==80 ? 14 : WID==64 ? 10 : WID==52 ? 10 : WID==48 ? 10 : WID==44 ? 10 : WID==42 ? 10 : WID==40 ? 9 : WID==32 ? 7 : WID==24 ? 6 : 4; localparam FMSB = WID==80 ? 63 : WID==64 ? 51 : WID==52 ? 39 : WID==48 ? 35 : WID==44 ? 31 : WID==42 ? 29 : WID==40 ? 28 : WID==32 ? 22 : WID==24 ? 15 : 9; localparam WX = 3; localparam FX = (FMSB+1)*2-1; // the MSB of the expanded fraction localparam EX = FX + WX + EMSB + 1; input clk; input ce; input [WID:1] a, b; output [EX+1:0] o; output sign_exe; output inf; output overflow; output underflow; reg [EMSB:0] xo1; // extra bit for sign reg [FX+WX:0] mo1; // constants wire [EMSB:0] infXp = {EMSB+1{1'b1}}; // infinite / NaN - all ones // The following is the value for an exponent of zero, with the offset // eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc. wire [EMSB:0] bias = {1'b0,{EMSB{1'b1}}}; //2^0 exponent // The following is a template for a quiet nan. (MSB=1) wire [FMSB:0] qNaN = {1'b1,{FMSB{1'b0}}}; // variables reg [FX+WX:0] fract1,fract1a; wire [FX+WX:0] fracto; wire [EMSB+2:0] ex1; // sum of exponents wire [EMSB :0] ex2; // Decompose the operands wire sa, sb; // sign bit wire [EMSB:0] xa, xb; // exponent bits wire [FMSB+1:0] fracta, fractb; wire a_dn, b_dn; // a/b is denormalized wire az, bz; wire aInf, bInf, aInf1, bInf1; // ----------------------------------------------------------- // First clock // - decode the input operands // - derive basic information // - calculate exponent // - calculate fraction // ----------------------------------------------------------- fpDecompose #(WID) u1a (.i(a), .sgn(sa), .exp(xa), .fract(fracta), .xz(a_dn), .vz(az), .inf(aInf) ); fpDecompose #(WID) u1b (.i(b), .sgn(sb), .exp(xb), .fract(fractb), .xz(b_dn), .vz(bz), .inf(bInf) ); // Compute the sum of the exponents. // correct the exponent for denormalized operands // adjust the sum by the exponent offset (subtract 127) // mul: ex1 = xa + xb, result should always be < 1ffh assign ex1 = (az|bz) ? 0 : (xa|a_dn) + (xb|b_dn) - bias; generate if (WID==64) begin reg [35:0] p00,p01,p02; reg [35:0] p10,p11,p12; reg [35:0] p20,p21,p22; always @(posedge clk) if (ce) begin p00 <= fracta[17: 0] * fractb[17: 0]; p01 <= fracta[35:18] * fractb[17: 0]; p02 <= fracta[52:36] * fractb[17: 0]; p10 <= fracta[17: 0] * fractb[35:18]; p11 <= fracta[35:18] * fractb[35:18]; p12 <= fracta[52:36] * fractb[35:18]; p20 <= fracta[17: 0] * fractb[52:36]; p21 <= fracta[35:18] * fractb[52:36]; p22 <= fracta[52:36] * fractb[52:36]; fract1 <= {p02,36'b0} + {p01,18'b0} + p00 + {p12,54'b0} + {p11,36'b0} + {p10,18'b0} + {p22,72'b0} + {p21,54'b0} + {p20,36'b0} ; end end else if (WID==32) begin reg [35:0] p00,p01; reg [35:0] p10,p11; always @(posedge clk) if (ce) begin p00 <= fracta[17: 0] * fractb[17: 0]; p01 <= fracta[23:18] * fractb[17: 0]; p10 <= fracta[17: 0] * fractb[23:18]; p11 <= fracta[23:18] * fractb[23:18]; fract1 <= {p11,p00} + {p01,18'b0} + {p10,18'b0}; end end endgenerate // Status wire under1, over1; wire under = ex1[EMSB+2]; // exponent underflow wire over = (&ex1[EMSB:0] | ex1[EMSB+1]) & !ex1[EMSB+2]; delay2 #(EMSB+1) u3 (.clk(clk), .ce(ce), .i(ex1[EMSB:0]), .o(ex2) ); delay2 #(FX+WX+1) u4 (.clk(clk), .ce(ce), .i(fract1), .o(fracto) ); delay2 u2a (.clk(clk), .ce(ce), .i(aInf), .o(aInf1) ); delay2 u2b (.clk(clk), .ce(ce), .i(bInf), .o(bInf1) ); delay2 u6 (.clk(clk), .ce(ce), .i(under), .o(under1) ); delay2 u7 (.clk(clk), .ce(ce), .i(over), .o(over1) ); // determine when a NaN is output wire qNaNOut; delay2 u5 (.clk(clk), .ce(ce), .i((aInf&bz)|(bInf&az)), .o(qNaNOut) ); // ----------------------------------------------------------- // Second clock // - correct xponent and mantissa for exceptional conditions // ----------------------------------------------------------- wire so1; delay3 u8 (.clk(clk), .ce(ce), .i(sa ^ sb), .o(so1) );// two clock delay! always @(posedge clk) if (ce) casex({qNaNOut,aInf1,bInf1,over1,under1}) 5'b1xxxx: xo1 = infXp; // qNaN - infinity * zero 5'b01xxx: xo1 = infXp; // 'a' infinite 5'b001xx: xo1 = infXp; // 'b' infinite 5'b0001x: xo1 = infXp; // result overflow 5'b00001: xo1 = 0; // underflow default: xo1 = ex2[EMSB:0]; // situation normal endcase always @(posedge clk) if (ce) casex({qNaNOut,aInf1,bInf1,over1}) 4'b1xxx: mo1 = {1'b0,qNaN|3'd4,{FMSB+1{1'b0}}}; // multiply inf * zero 4'b01xx: mo1 = 0; // mul inf's 4'b001x: mo1 = 0; // mul inf's 4'b0001: mo1 = 0; // mul overflow default: mo1 = fracto; endcase delay3 u10 (.clk(clk), .ce(ce), .i(sa & sb), .o(sign_exe) ); delay1 u11 (.clk(clk), .ce(ce), .i(over1), .o(overflow) ); delay1 u12 (.clk(clk), .ce(ce), .i(over1), .o(inf) ); delay1 u13 (.clk(clk), .ce(ce), .i(under1), .o(underflow) ); assign o = {so1,xo1,mo1}; endmodule module fpMul_tb(); reg clk; wire ce = 1'b1; wire sgnx1,sgnx2,sgnx3,sgnx4,sgnx5,sgnx6; wire inf1,inf2,inf3,inf4,inf5,inf6; wire of1,of2,of3,of4,of5,of6; wire uf1,uf2,uf3,uf4,uf5,uf6; wire [57:0] o1,o2,o3,o4,o5,o6; wire [35:0] o11,o12,o13; wire [31:0] o21,o22,o23; initial begin clk = 0; end always #10 clk <= ~clk; fpMul u1 (.clk(clk), .ce(1'b1), .a(0), .b(0), .o(o1), .sign_exe(sgnx1), .inf(inf1), .overflow(of1), .underflow(uf1)); fpMul u2 (.clk(clk), .ce(1'b1), .a(0), .b(0), .o(o2), .sign_exe(sgnx2), .inf(inf2), .overflow(of2), .underflow(uf2)); // 10x10 fpMul u3 (.clk(clk), .ce(1'b1), .a(32'h41200000), .b(32'h41200000), .o(o3), .sign_exe(sgnx2), .inf(inf2), .overflow(of2), .underflow(uf2)); // 21*-17 fpMul u4 (.clk(clk), .ce(1'b1), .a(32'h41a80000), .b(32'hc1880000), .o(o4), .sign_exe(sgnx2), .inf(inf2), .overflow(of2), .underflow(uf2)); // -17*-15 fpMul u5 (.clk(clk), .ce(1'b1), .a(32'hc1880000), .b(32'hc1700000), .o(o5), .sign_exe(sgnx2), .inf(inf2), .overflow(of2), .underflow(uf2)); fpNormalize u11 (clk, ce, 1'b0, o3, o11); fpNormalize u12 (clk, ce, 1'b0, o4, o12); fpNormalize u13 (clk, ce, 1'b0, o5, o13); fpRound u21 (3'd1, o11, o21); // zero for zero fpRound u22 (3'd1, o12, o22); // fpRound u23 (3'd1, o13, o23); // endmodule
Go to most recent revision | Compare with Previous | Blame | View Log