URL
https://opencores.org/ocsvn/ft816float/ft816float/trunk
Subversion Repositories ft816float
[/] [ft816float/] [trunk/] [rtl/] [verilog/] [fpRound.v] - Rev 60
Go to most recent revision | Compare with Previous | Blame | View Log
`timescale 1ns / 1ps // ============================================================================ // __ // \\__/ o\ (C) 2006-2018 Robert Finch, Waterloo // \ __ / All rights reserved. // \/_// robfinch<remove>@finitron.ca // || // // fpRound.v // - floating point rounding unit // - parameterized width // - IEEE 754 representation // // // This source file is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This source file is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // // ============================================================================ module fpRound(rm, i, o); parameter WID = 128; `include "fpSize.sv" input [2:0] rm; // rounding mode input [MSB+3:0] i; // intermediate format input output [WID-1:0] o; // rounded output //------------------------------------------------------------ // variables wire so; wire [EMSB:0] xo; reg [FMSB:0] mo; wire [EMSB:0] xo1 = i[MSB+2:FMSB+4]; wire [FMSB+3:0] mo1 = i[FMSB+3:0]; wire xInf = &xo1; wire dn = !(|xo1); // denormalized input assign o = {so,xo,mo}; wire g = i[2]; // guard bit: always the same bit for all operations wire r = i[1]; // rounding bit wire s = i[0]; // sticky bit reg rnd; // Compute the round bit // Infinities and NaNs are not rounded! always @(xInf,rm,g,r,s,so) casez ({xInf,rm}) 4'b0000: rnd = (g & r) | (r & s); // round to nearest even 4'b0001: rnd = 0; // round to zero (truncate) 4'b0010: rnd = (r | s) & !so; // round towards +infinity 4'b0011: rnd = (r | s) & so; // round towards -infinity 4'b1???: rnd = (r | s); default: rnd = 0; // no rounding if exponent indicates infinite or NaN endcase // round the number, check for carry // note: inf. exponent checked above (if the exponent was infinite already, then no rounding occurs as rnd = 0) // note: exponent increments if there is a carry (can only increment to infinity) // performance note: use the carry chain to increment the exponent wire [MSB:0] rounded = {xo1,mo1[FMSB+3:2]} + rnd; wire carry = mo1[FMSB+3] & !rounded[FMSB+1]; assign so = i[MSB+3]; assign xo = rounded[MSB:FMSB+2]; always @(rnd or xo or carry or dn or rounded or mo1) casez({rnd,&xo,carry,dn}) 4'b0??0: mo = mo1[FMSB+2:2]; // not rounding, not denormalized, => hide MSB 4'b0??1: mo = mo1[FMSB+3:3]; // not rounding, denormalized 4'b1000: mo = rounded[FMSB :0]; // exponent didn't change, number was normalized, => hide MSB 4'b1001: mo = rounded[FMSB+1:1]; // exponent didn't change, but number was denormalized, => retain MSB 4'b1010: mo = rounded[FMSB+1:1]; // exponent incremented (new MSB generated), number was normalized, => hide 'extra (FMSB+2)' MSB 4'b1011: mo = rounded[FMSB+1:1]; // exponent incremented (new MSB generated), number was denormalized, number became normalized, => hide 'extra (FMSB+2)' MSB 4'b11??: mo = 0; // number became infinite, no need to check carry etc., rnd would be zero if input was NaN or infinite endcase endmodule // Round and register the output module fpRoundReg(clk, ce, rm, i, o); parameter WID = 128; `include "fpSize.sv" input clk; input ce; input [2:0] rm; // rounding mode input [MSB+3:0] i; // expanded format input output reg [WID-1:0] o; // rounded output wire [WID-1:0] o1; fpRound #(WID) u1 (.rm(rm), .i(i), .o(o1) ); always @(posedge clk) if (ce) o <= o1; endmodule
Go to most recent revision | Compare with Previous | Blame | View Log