URL
https://opencores.org/ocsvn/ft816float/ft816float/trunk
Subversion Repositories ft816float
[/] [ft816float/] [trunk/] [rtl/] [verilog2/] [DFPAddsub.sv] - Rev 50
Go to most recent revision | Compare with Previous | Blame | View Log
// ============================================================================// __// \\__/ o\ (C) 2020 Robert Finch, Waterloo// \ __ / All rights reserved.// \/_// robfinch<remove>@finitron.ca// ||//// DFPAddsub.sv//// BSD 3-Clause License// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// 1. Redistributions of source code must retain the above copyright notice, this// list of conditions and the following disclaimer.//// 2. Redistributions in binary form must reproduce the above copyright notice,// this list of conditions and the following disclaimer in the documentation// and/or other materials provided with the distribution.//// 3. Neither the name of the copyright holder nor the names of its// contributors may be used to endorse or promote products derived from// this software without specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.//// ============================================================================module DFPAddsub(clk, ce, rm, op, a, b, o);input clk;input ce;input [2:0] rm;input op;input [127:0] a;input [127:0] b;output [219:0] o;parameter TRUE = 1'b1;parameter FALSE = 1'b0;wire sa, sb;wire sxa, sxb;wire adn, bdn;wire xainf, xbinf;wire ainf, binf;wire aNan, bNan;wire [15:0] xa, xb;wire [95:0] siga, sigb;wire [15:0] xabdif4;BCDSub4 ubcds1(.ci(1'b0),.a(xa_gt_xb4 ? xa4 : xb4),.b(xa_gt_xb4 ? xb4 : xa4),.o(xabdif4),.c(),.c8());wire [99:0] oss10;wire oss10c;BCDAddN #(.N(25)) ubcdan1(.ci(1'b0),.a(oaa10),.b(obb10),.o(oss10),.co(oss10c));wire [99:0] odd10;wire odd10c;BCDSubN #(.N(25)) ubcdsn1(.ci(1'b0),.a(oaa10),.b(obb10),.o(odd10),.co(odd10c));// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -// Clock #1// - decode the input operands// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -reg op1;DFPDecomposeReg u1a (.clk(clk), .ce(ce), .i(a), .sgn(sa), .sx(sxa), .exp(xa), .sig(siga), .xz(adn), .vz(az), .inf(aInf), .nan(aNan) );DFPDecomposeReg u1b (.clk(clk), .ce(ce), .i(b), .sgn(sb), .sx(sxb), .exp(xb), .sig(sigb), .xz(bdn), .vz(bz), .inf(bInf), .nan(bNan) );always @(posedge clk)if (ce) op1 <= op;// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -// Clock #2//// Figure out which operation is really needed an add or subtract ?// If the signs are the same, use the orignal op,// otherwise flip the operation// a + b = add,+// a + -b = sub, so of larger// -a + b = sub, so of larger// -a + -b = add,-// a - b = sub, so of larger// a - -b = add,+// -a - b = add,-// -a - -b = sub, so of larger// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -reg realOp2;reg op2;reg [15:0] xa2, xb2;reg az2, bz2;reg xa_gt_xb2;reg [95:0] siga2, sigb2;reg sigeq, siga_gt_sigb;reg xa_gt_xb2;reg expeq;reg sxo2;always @(posedge clk)if (ce) realOp2 = op1 ^ sa ^ sb;always @(posedge clk)if (ce) op2 <= op1;always @(posedge clk)if (ce) xa2 <= xa;always @(posedge clk)if (ce) xb2 <= xb;always @(posedge clk)if (ce) siga2 <= siga;always @(posedge clk)if (ce) sigb2 <= sigb;always @(posedge clk)if (ce) az2 <= az;always @(posedge clk)if (ce) bz2 <= bz;always @(posedge clk)if (ce)if (sxa & ~sxb)xa_gt_xb2 <= TRUE;else if (~sxa & sxb)xa_gt_xb2 <= FALSE;elsexa_gt_xb2 <= sxa ? xa > xb : xa < xb;always @(posedge clk)if (ce)sxo2 <= sxa|sxb;always @(posedge clk)if (ce) sigeq <= siga==sigb;always @(posedge clk)if (ce) siga_gt_sigb <= siga > sigb;always @(posedge clk)if (ce) expeq <= {sxa,xa}=={sxb,xb};// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -// Clock #3//// Find out if the result will be zero.// Determine which fraction to denormalize// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -//reg [15:0] xa3, xb3;reg resZero3;wire xaInf3, xbInf3;reg xa_gt_xb3;reg a_gt_b3;reg op3;wire sa3, sb3;wire [2:0] rm3;reg [95:0] mfs3;always @(posedge clk)if (ce) resZero3 <= (realOp2 & expeq & sigeq) || // subtract, same magnitude(az2 & bz2); // both a,b zeroalways @(posedge clk)if (ce) xa3 <= xa2;always @(posedge clk)if (ce) xb3 <= xb2;always @(posedge clk)if (ce) xa_gt_xb3 <= xa_gt_xb2;always @(posedge clk)if (ce) a_gt_b3 <= xa_gt_xb2 | (expeq & siga_gt_sigb);always @(posedge clk)if (ce) op3 <= op2;always @(posedge clk)if (ce) mfs3 = xa_gt_xb2 ? sigb2 : siga2;delay #(.WID(1), .DEP(2)) udly3c (.clk(clk), .ce(ce), .i(sa), .o(sa3));delay #(.WID(1), .DEP(2)) udly3d (.clk(clk), .ce(ce), .i(sb), .o(sb3));delay #(.WID(3), .DEP(3)) udly3e (.clk(clk), .ce(ce), .i(rm), .o(rm3));delay #(.WID(1), .DEP(2)) udly3f (.clk(clk), .ce(ce), .i(aInf), .o(aInf3));delay #(.WID(1), .DEP(2)) udly3g (.clk(clk), .ce(ce), .i(bInf), .o(bInf3));// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -// Clock #4//// Compute output exponent//// The output exponent is the larger of the two exponents,// unless a subtract operation is in progress and the two// numbers are equal, in which case the exponent should be// zero.// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -reg [15:0] xa4, xb4;reg [15:0] xo4;reg xa_gt_xb4;always @(posedge clk)if (ce) xa4 <= xa3;always @(posedge clk)if (ce) xb4 <= xb3;always @(posedge clk)if (ce) xo4 <= resZero3 ? 16'd0 : xa_gt_xb3 ? xa3 : xb3;always @(posedge clk)if (ce) xa_gt_xb4 <= xa_gt_xb3;// Compute output signreg so4;always @*case ({resZero3,sa3,op3,sb3}) // synopsys full_case parallel_case4'b0000: so4 <= 0; // + + + = +4'b0001: so4 <= !a_gt_b3; // + + - = sign of larger4'b0010: so4 <= !a_gt_b3; // + - + = sign of larger4'b0011: so4 <= 0; // + - - = +4'b0100: so4 <= a_gt_b3; // - + + = sign of larger4'b0101: so4 <= 1; // - + - = -4'b0110: so4 <= 1; // - - + = -4'b0111: so4 <= a_gt_b3; // - - - = sign of larger4'b1000: so4 <= 0; // A + B, sign = +4'b1001: so4 <= rm3==3'd3; // A + -B, sign = + unless rounding down4'b1010: so4 <= rm3==3'd3; // A - B, sign = + unless rounding down4'b1011: so4 <= 0; // +A - -B, sign = +4'b1100: so4 <= rm3==3'd3; // -A + B, sign = + unless rounding down4'b1101: so4 <= 1; // -A + -B, sign = -4'b1110: so4 <= 1; // -A - +B, sign = -4'b1111: so4 <= rm3==3'd3; // -A - -B, sign = + unless rounding downendcase// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -// Clock #5//// Compute the difference in exponents, provides shift amount// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -reg [15:0] xdiff5;always @(posedge clk)if (ce) xdiff5 <= xabdif4;// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -// Clock #6//// Compute the difference in exponents, provides shift amount// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -// If the difference in the exponent is 24 or greater (assuming 24 nybble dfp or// less) then all of the bits will be shifted out to zero. There is no need to// keep track of a difference more than 24.reg [11:0] xdif6;wire [95:0] mfs6;always @(posedge clk)if (ce) xdif6 <= xdiff5 > 16'h0024 ? 8'h24 : xdiff5[7:0];delay #(.WID(96), .DEP(3)) udly6a (.clk(clk), .ce(ce), .i(mfs3), .o(mfs6));// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -// Clock #7//// Determine the sticky bit. The sticky bit is the bitwise or of all the bits// being shifted out the right side. The sticky bit is computed here to// reduce the number of regs required.// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -reg sticky6;wire sticky7;wire [7:0] xdif7;wire [95:0] mfs7;wire [7:0] xdif6a = {xdif6[7:4] * 10 + xdif6[3:0],2'b00}; // Convert base then *4integer n;always @* beginsticky6 = 1'b0;for (n = 0; n < 96; n = n + 4)if (n <= xdif6a)sticky6 = sticky6| mfs6[n]|mfs6[n+1]|mfs6[n+2]|mfs6[n+3]; // non-zeero nybbleend// register inputs to shifter and shiftdelay1 #(1) d16(.clk(clk), .ce(ce), .i(sticky6), .o(sticky7) );delay1 #(8) d15(.clk(clk), .ce(ce), .i(xdif6a), .o(xdif7) );delay1 #(96) d14(.clk(clk), .ce(ce), .i(mfs6), .o(mfs7) );// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -// Clock #8// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -reg [99:0] md8;wire [95:0] siga8, sigb8;wire xa_gt_xb8;wire a_gt_b8;always @(posedge clk)if (ce) md8 <= ({mfs7,4'b0} >> xdif7)|sticky7; // xdif7 is a multiple of four// sync control signalsdelay #(.WID(1), .DEP(4)) udly8a (.clk(clk), .ce(ce), .i(xa_gt_xb4), .o(xa_gt_xb8));delay #(.WID(1), .DEP(5)) udly8b (.clk(clk), .ce(ce), .i(a_gt_b3), .o(a_gt_b8));delay #(.WID(96), .DEP(6)) udly8d (.clk(clk), .ce(ce), .i(siga2), .o(siga8));delay #(.WID(96), .DEP(6)) udly8e (.clk(clk), .ce(ce), .i(sigb2), .o(sigb8));delay #(.WID(1), .DEP(5)) udly8j (.clk(clk), .ce(ce), .i(op3), .o(op8));// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -// Clock #9// Sort operands and perform add/subtract// addition can generate an extra bit, subtract can't go negative// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -reg [99:0] oa9, ob9;reg a_gt_b9;always @(posedge clk)if (ce) oa9 <= xa_gt_xb8 ? {siga8,4'b0} : md8;always @(posedge clk)if (ce) ob9 <= xa_gt_xb8 ? md8 : {sigb8,4'b0};always @(posedge clk)if (ce) a_gt_b9 <= a_gt_b8;// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -// Clock #10// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -reg [99:0] oaa10;reg [99:0] obb10;wire realOp10;reg [15:0] xo10;always @(posedge clk)if (ce) oaa10 <= a_gt_b9 ? oa9 : ob9;always @(posedge clk)if (ce) obb10 <= a_gt_b9 ? ob9 : oa9;delay #(.WID(1), .DEP(8)) udly10a (.clk(clk), .ce(ce), .i(realOp2), .o(realOp10));delay #(.WID(16), .DEP(6)) udly10b (.clk(clk), .ce(ce), .i(xo4), .o(xo10));// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -// Clock #11// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -reg [99:0] mab11;reg mab11c;wire [95:0] siga11, sigb11;wire abInf11;wire aNan11, bNan11;reg xoinf11;wire op11;always @(posedge clk)if (ce) mab11 <= realOp10 ? odd10 : oss10;always @(posedge clk)if (ce) mab11c <= realOp10 ? odd10c : oss10c;delay #(.WID(1), .DEP(8)) udly11a (.clk(clk), .ce(ce), .i(aInf3&bInf3), .o(abInf11));delay #(.WID(1), .DEP(10)) udly11c (.clk(clk), .ce(ce), .i(aNan), .o(aNan11));delay #(.WID(1), .DEP(10)) udly11d (.clk(clk), .ce(ce), .i(bNan), .o(bNan11));delay #(.WID(1), .DEP(3)) udly11e (.clk(clk), .ce(ce), .i(op8), .o(op11));delay #(.WID(96), .DEP(3)) udly11f (.clk(clk), .ce(ce), .i(siga8), .o(siga11));delay #(.WID(96), .DEP(3)) udly11g (.clk(clk), .ce(ce), .i(sigb8), .o(sigb11));always @(posedge clk)if (ce) xoinf11 <= xo10==16'h9999;// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -// Clock #12// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -reg [199:0] mo12; // mantissa outputreg [3:0] st12;wire sxo11;wire so11;delay #(.WID(1), .DEP(9)) udly12a (.clk(clk), .ce(ce), .i(sxo2), .o(sxo11));delay #(.WID(1), .DEP(7)) udly12b (.clk(clk), .ce(ce), .i(so4), .o(so11));always @(posedge clk)if (ce) beginst12[0] <= sxo11;st12[1] <= abInf11;st12[2] <= so11;st12[3] <= aNan11|bNan11;endalways @(posedge clk)if (ce)casez({abInf11,aNan11,bNan11,xoinf11})4'b1???: // inf +/- inf - generate QNaN on subtract, inf on addif (op11)mo12 <= {4'h9,196'd0};elsemo12 <= {50{4'h9}};4'b01??: mo12 <= {4'b0,siga11[95:0],100'd0};4'b001?: mo12 <= {4'b0,sigb11[95:0],100'd0};4'b0001: mo12 <= 200'd0;default: mo12 <= {3'b0,mab11c,mab11,96'd0}; // mab has an extra lead bit and four trailing bitsendcase// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -// Clock #13// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -wire so; // sign outputwire [3:0] st;wire [15:0] xo; // de normalized exponent outputwire [199:0] mo; // mantissa outputdelay #(.WID(4), .DEP(1)) u13c (.clk(clk), .ce(ce), .i(st12), .o(st[3:0]) );delay #(.WID(1), .DEP(9)) udly13a (.clk(clk), .ce(ce), .i(so4), .o(so));delay #(.WID(16), .DEP(3)) udly13b (.clk(clk), .ce(ce), .i(xo10), .o(xo));delay #(.WID(200), .DEP(1)) u13d (.clk(clk), .ce(ce), .i(mo12), .o(mo) );assign o = {st,xo,mo};endmodulemodule DFPAddsubnr(clk, ce, rm, op, a, b, o);input clk; // system clockinput ce; // core clock enableinput [2:0] rm; // rounding modeinput op; // operation 0 = add, 1 = subtractinput [127:0] a; // operand ainput [127:0] b; // operand boutput [127:0] o; // outputwire [219:0] o1;wire [119:0] fpn0;DFPAddsub u1 (clk, ce, rm, op, a, b, o1);DFPNormalize u2(.clk(clk), .ce(ce), .under_i(1'b0), .i(o1), .o(fpn0) );DFPRound u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );endmodule
Go to most recent revision | Compare with Previous | Blame | View Log
