URL
https://opencores.org/ocsvn/ft816float/ft816float/trunk
Subversion Repositories ft816float
[/] [ft816float/] [trunk/] [rtl/] [verilog2/] [DFPDivide.sv] - Rev 55
Compare with Previous | Blame | View Log
// ============================================================================// __// \\__/ o\ (C) 2006-2020 Robert Finch, Waterloo// \ __ / All rights reserved.// \/_// robfinch<remove>@finitron.ca// ||//// DFPDivide.sv// - decimal floating point divider// - parameterized width////// BSD 3-Clause License// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// 1. Redistributions of source code must retain the above copyright notice, this// list of conditions and the following disclaimer.//// 2. Redistributions in binary form must reproduce the above copyright notice,// this list of conditions and the following disclaimer in the documentation// and/or other materials provided with the distribution.//// 3. Neither the name of the copyright holder nor the names of its// contributors may be used to endorse or promote products derived from// this software without specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.//// Floating Point Divider////Properties://+-inf * +-inf = -+inf (this is handled by exOver)//+-inf * 0 = QNaN//+-0 / +-0 = QNaN// ============================================================================import fp::*;module DFPDivide(rst, clk, ce, ld, op, a, b, o, done, sign_exe, overflow, underflow);parameter N=33;// FADD is a constant that makes the divider width a multiple of four and includes eight extra bits.input rst;input clk;input ce;input ld;input op;input [N*4+16+4-1:0] a, b;output [(N+1)*4*2+16+4-1:0] o;output reg done;output sign_exe;output overflow;output underflow;// registered outputsreg sign_exe=0;reg inf=0;reg overflow=0;reg underflow=0;reg so, sxo;reg [3:0] st;reg [15:0] xo;reg [(N+1)*4*2-1:0] mo;assign o = {st,xo,mo};// constantswire [15:0] infXp = 16'h9999; // infinite / NaN - all ones// The following is the value for an exponent of zero, with the offset// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.// The following is a template for a quiet nan. (MSB=1)wire [N*4-1:0] qNaN = {4'h1,{(N-1)*4{1'b0}}};// variableswire [(N+2)*4*2-1:0] divo;// Operandswire sa, sb; // sign bitwire sxa, sxb;wire [15:0] xa, xb; // exponent bitswire [N*4-1:0] siga, sigb;wire a_dn, b_dn; // a/b is denormalizedwire az, bz;wire aInf, bInf;wire aNan,bNan;wire done1;wire signed [7:0] lzcnt;// -----------------------------------------------------------// Clock #1// - decode the input operands// - derive basic information// - calculate fraction// -----------------------------------------------------------reg ld1;DFPDecomposeReg u1a (.clk(clk), .ce(ce), .i(a), .sgn(sa), .sx(sxa), .exp(xa), .sig(siga), .xz(a_dn), .vz(az), .inf(aInf), .nan(aNan) );DFPDecomposeReg u1b (.clk(clk), .ce(ce), .i(b), .sgn(sb), .sx(sxb), .exp(xb), .sig(sigb), .xz(b_dn), .vz(bz), .inf(bInf), .nan(bNan) );delay #(.WID(1), .DEP(1)) udly1 (.clk(clk), .ce(ce), .i(ld), .o(ld1));// -----------------------------------------------------------// Clock #2 to N// - calculate fraction// -----------------------------------------------------------wire done3a,done3;// Perform dividedfdiv #(N+2) u2 (.clk(clk), .ld(ld1), .a({siga,8'b0}), .b({sigb,8'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));wire [7:0] lzcnt_bin = lzcnt[3:0] + (lzcnt[7:4] * 10);wire [(N+2)*4*2-1:0] divo1 = divo[(N+2)*4*2-1:0] << ({lzcnt_bin,2'b0}+(N*4));//WAS FPWID=128?+44delay #(.WID(1), .DEP(3)) u3 (.clk(clk), .ce(ce), .i(done1), .o(done3a));assign done3 = done1&done3a;// -----------------------------------------------------------// Clock #N+1// - calculate exponent// - calculate fraction// - determine when a NaN is output// -----------------------------------------------------------// Compute the exponent.// - correct the exponent for denormalized operands// - adjust the difference by the bias (add 127)// - also factor in the different decimal position for divisionreg [15:0] ex2, ex1, ex2a, ex2b; // sum of exponentsreg qNaNOut;reg under1, under;reg over1, over;wire [15:0] xapxb, xamxb, xbmxa;wire xapxbc, xamxbc, xbmxac;reg sxo0;BCDAddN #(.N(4)) u5 (.ci(1'b0), .a(xa), .b(xb), .o(xapxb), .co(xapxbc) );BCDSubN #(.N(4)) u6 (.ci(1'b0), .a(xa), .b(xb), .o(xamxb), .co(xamxbc) );BCDSubN #(.N(4)) u7 (.ci(1'b0), .a(xb), .b(xa), .o(xbmxa), .co(xbmxac) );BCDSubN #(.N(5)) u10 (.ci(1'b0), .a(20'h10000), .b(ex2a), .o(ex2b), .co() );always @*case ({sxa,sxb})2'b11: begin ex2a <= xbmxa; sxo0 <= ~xbmxac; over1 <= 1'b0; under1 <= 1'b0; end2'b10: begin ex2a <= xapxb; sxo0 <= 1'b1; over1 <= xapxbc; under1 <= 1'b0; end2'b01: begin ex2a <= xapxb; sxo0 <= 1'b0; over1 <= 1'b0; under1 <= xapxbc; end2'b00: begin ex2a <= xamxb; sxo0 <= ~xamxbc; over1 <= 1'b0; under1 <= 1'b0; endendcasealways @*if (~sxo0 && ~(sa^sb))ex2 <= ex2b;elseex2 <= ex2a;wire [15:0] ex1a, ex1b, ex1d;reg [15:0] ex1c;wire sxoa, sxob, sxoc;BCDAddN #(.N(4)) u8 (.ci(1'b0), .a(ex2), .b({8'h00,lzcnt}), .o(ex1a), .co(sxoa) );BCDSubN #(.N(4)) u9 (.ci(1'b0), .a(ex2), .b({8'h00,lzcnt}), .o(ex1b), .co(sxob) );BCDSubN #(.N(5)) u11 (.ci(1'b0), .a(20'h10000), .b(ex1c), .o(ex1d), .co() );always @(posedge clk)case(sxo0)2'd1: begin ex1c <= ex1b; sxo <= ~sxob; over <= over1; under <= under1; end2'd0: begin ex1c <= ex1a; sxo <= 1'b0; over <= over1; under <= under1|sxob; endendcasealways @*if (sxo0 & sxob) // There was a borrow on a subtract, making the number negativeex1 <= ex1d;elseex1 <= ex1c;always @(posedge clk)if (ce) qNaNOut <= (az&bz)|(aInf&bInf);// -----------------------------------------------------------// Clock #N+3// -----------------------------------------------------------always @(posedge clk)// Simulation likes to see these values reset to zero on reset. Otherwise the// values propagate in sim as X's.if (rst) beginxo <= 1'd0;mo <= 1'd0;so <= 1'd0;sign_exe <= 1'd0;overflow <= 1'd0;underflow <= 1'd0;done <= 1'b1;endelse if (ce) begindone <= 1'b0;if (done3&done1) begindone <= 1'b1;casez({qNaNOut|aNan|bNan,bInf,bz,over,under})5'b1????: xo <= infXp; // NaN exponent value5'b01???: xo <= 1'd0; // divide by inf5'b001??: xo <= infXp; // divide by zero5'b0001?: xo <= infXp; // overflow5'b00001: xo <= 1'd0; // underflowdefault: xo <= ex1; // normal or underflow: passthru neg. exp. for normalizationendcasecasez({aNan,bNan,qNaNOut,bInf,bz,over,aInf&bInf,az&bz})8'b1???????: begin mo <= {4'h1,a[N*4-1:0],{(N+1)*4-1{1'b0}}}; st[3] <= 1'b1; end8'b01??????: begin mo <= {4'h1,b[N*4-1:0],{(N+1)*4-1{1'b0}}}; st[3] <= 1'b1; end8'b001?????: begin mo <= {4'h1,qNaN[N*4-1:0]|{aInf,1'b0}|{az,bz},{(N+1)*4-1{1'b0}}}; st[3] <= 1'b1; end8'b0001????: begin mo <= {(N+1)*4*2-1{1'd0}}; st[3] <= 1'b0; end // div by inf8'b00001???: begin mo <= {(N+1)*4*2-1{1'd0}}; st[3] <= 1'b0; end // div by zero8'b000001??: begin mo <= {(N+1)*4*2-1{1'd0}}; st[3] <= 1'b0; end // Inf exponent8'b0000001?: begin mo <= {4'h1,qNaN|`QINFDIV,{(N+1)*4-1{1'b0}}}; st[3] <= 1'b1; end // infinity / infinity8'b00000001: begin mo <= {4'h1,qNaN|`QZEROZERO,{(N+1)*4-1{1'b0}}}; st[3] <= 1'b1; end // zero / zerodefault: begin mo <= divo1[(N+2)*4*2-1:8]; st[3] <= 1'b0; end // plain divendcasest[0] <= sxo;st[1] <= aInf;st[2] <= ~(sa ^ sb);so <= ~(sa ^ sb);sign_exe <= sa & sb;overflow <= over;underflow <= under;endendendmodulemodule DFPDividenr(rst, clk, ce, ld, op, a, b, o, rm, done, sign_exe, inf, overflow, underflow);parameter N=33;input rst;input clk;input ce;input ld;input op;input [N*4+16+4-1:0] a, b;output [N*4+16+4-1:0] o;input [2:0] rm;output sign_exe;output done;output inf;output overflow;output underflow;wire [(N+1)*4*2+16+4-1:0] o1;wire sign_exe1, inf1, overflow1, underflow1;wire [N*4+16+4-1+4:0] fpn0;wire done1, done1a;DFPDivide #(.N(N)) u1 (rst, clk, ce, ld, op, a, b, o1, done1, sign_exe1, overflow1, underflow1);DFPNormalize #(.N(N)) u2(.clk(clk), .ce(ce), .under_i(underflow1), .i(o1), .o(fpn0) );DFPRound #(.N(N)) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );delay2 #(1) u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe));delay2 #(1) u5(.clk(clk), .ce(ce), .i(inf1), .o(inf));delay2 #(1) u6(.clk(clk), .ce(ce), .i(overflow1), .o(overflow));delay2 #(1) u7(.clk(clk), .ce(ce), .i(underflow1), .o(underflow));delay #(.WID(1),.DEP(11)) u8(.clk(clk), .ce(ce), .i(done1), .o(done1a));assign done = done1&done1a;endmodule
