URL
https://opencores.org/ocsvn/ft816float/ft816float/trunk
Subversion Repositories ft816float
[/] [ft816float/] [trunk/] [rtl/] [verilog2/] [DFPMultiply128.sv] - Rev 70
Compare with Previous | Blame | View Log
// ============================================================================// __// \\__/ o\ (C) 2020-2022 Robert Finch, Waterloo// \ __ / All rights reserved.// \/_// robfinch<remove>@finitron.ca// ||//// DFPMultiply128.v// - decimal floating point multiplier// - parameterized width////// BSD 3-Clause License// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// 1. Redistributions of source code must retain the above copyright notice, this// list of conditions and the following disclaimer.//// 2. Redistributions in binary form must reproduce the above copyright notice,// this list of conditions and the following disclaimer in the documentation// and/or other materials provided with the distribution.//// 3. Neither the name of the copyright holder nor the names of its// contributors may be used to endorse or promote products derived from// this software without specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.////// Floating Point Multiplier//// Properties:// +-inf * +-inf = -+inf (this is handled by exOver)// +-inf * 0 = QNaN//// ============================================================================import DFPPkg::*;//`define DFPMUL_PARALLEL 1'b1module DFPMultiply128(clk, ce, ld, a, b, o, sign_exe, inf, overflow, underflow, done);localparam N=34;localparam DELAY = 2;input clk;input ce;input ld;input DFP128 a, b;output DFP128UD o;output sign_exe;output inf;output overflow;output underflow;output done;reg [13:0] xo1; // extra bit for signreg [N*4*2-1:0] mo1;// constantswire [13:0] infXp = 14'h2FFF; // infinite / NaN - all oneswire [13:0] bias = 14'h17FF;// The following is the value for an exponent of zero, with the offset// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.// The following is a template for a quiet nan. (MSB=1)wire [N*4-1:0] qNaN = {4'h1,{104{1'b0}}};// variablesreg [N*4*2-1:0] sig1;wire [13:0] ex2;DFP128U au, bu;DFPUnpack128 u01 (a, au);DFPUnpack128 u02 (b, bu);// Decompose the operandswire sa, sb; // sign bitwire [13:0] xa, xb; // exponent bitswire sxa, sxb;wire [N*4-1:0] siga, sigb;wire a_dn, b_dn; // a/b is denormalizedwire aNan1, bNan1;wire az, bz;wire aInf1, bInf1;assign siga = au.sig;assign sigb = bu.sig;assign az = au.exp==14'h0 && au.sig==136'd0;assign bz = bu.exp==14'h0 && bu.sig==136'd0;// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -// Clock #1// - decode the input operands// - derive basic information// - calculate exponent// - calculate fraction// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -// -----------------------------------------------------------// First clock// Compute the sum of the exponents.// -----------------------------------------------------------wire under, over;wire [15:0] sum_ex = au.exp + bu.exp - bias;reg sx0;wire done1;assign under = &sum_ex[15:14];assign over = sum_ex > 16'h2FFF;wire [N*4*2-1:0] sigoo;`ifdef DFPMUL_PARALLELBCDMul32 u1f (.a({20'h0,siga}),.b({20'h0,sigb}),.o(sigoo));`elsedfmul #(.N(N)) u1g(.clk(clk),.ld(ld),.a(siga),.b(sigb),.p(sigoo),.done(done1));`endifalways @(posedge clk)if (ce) sig1 <= sigoo[N*4*2-1:0];// Statuswire under1, over1;ft_delay #(.WID(14),.DEP(DELAY)) u3 (.clk(clk), .ce(ce), .i(sum_ex[13:0]), .o(ex2) );ft_delay #(.WID(1),.DEP(DELAY)) u2a (.clk(clk), .ce(ce), .i(au.infinity), .o(aInf1) );ft_delay #(.WID(1),.DEP(DELAY)) u2b (.clk(clk), .ce(ce), .i(bu.infinity), .o(bInf1) );ft_delay #(.WID(1),.DEP(DELAY)) u6 (.clk(clk), .ce(ce), .i(under), .o(under1) );ft_delay #(.WID(1),.DEP(DELAY)) u7 (.clk(clk), .ce(ce), .i(over), .o(over1) );// determine when a NaN is outputwire qNaNOut;wire DFP128U a1,b1;wire asnan, bsnan, aqnan, bqnan;ft_delay #(.WID(1),.DEP(DELAY)) u5 (.clk(clk), .ce(ce), .i((au.infinity&bz)|(bu.infinity&az)), .o(qNaNOut) );ft_delay #(.WID(1),.DEP(DELAY)) u14 (.clk(clk), .ce(ce), .i(au.nan), .o(aNan1) );ft_delay #(.WID(1),.DEP(DELAY)) u15 (.clk(clk), .ce(ce), .i(bu.nan), .o(bNan1) );ft_delay #(.WID(1),.DEP(DELAY)) u18 (.clk(clk), .ce(ce), .i(au.snan), .o(asnan) );ft_delay #(.WID(1),.DEP(DELAY)) u19 (.clk(clk), .ce(ce), .i(bu.snan), .o(bsnan) );ft_delay #(.WID(1),.DEP(DELAY)) u18a (.clk(clk), .ce(ce), .i(au.qnan), .o(aqnan) );ft_delay #(.WID(1),.DEP(DELAY)) u19a (.clk(clk), .ce(ce), .i(bu.qnan), .o(bqnan) );ft_delay #(.WID($bits(a1)),.DEP(DELAY)) u16 (.clk(clk), .ce(ce), .i(a), .o(a1) );ft_delay #(.WID($bits(b1)),.DEP(DELAY)) u17 (.clk(clk), .ce(ce), .i(b), .o(b1) );// -----------------------------------------------------------// Second clock// - correct xponent and mantissa for exceptional conditions// -----------------------------------------------------------wire so1, sx1;reg [3:0] st;wire done1a;ft_delay #(.WID(1),.DEP(1)) u8 (.clk(clk), .ce(ce), .i(au.sign ^ bu.sign), .o(so1) );// two clock delay!always @(posedge clk)if (ce)casez({qNaNOut|aNan1|bNan1,aInf1,bInf1,over1,under1})5'b1????: xo1 = infXp; // qNaN - infinity * zero5'b01???: xo1 = infXp; // 'a' infinite5'b001??: xo1 = infXp; // 'b' infinite5'b0001?: xo1 = infXp; // result overflow5'b00001: xo1 = ex2[13:0];//0; // underflowdefault: xo1 = ex2[13:0]; // situation normalendcase// Force mantissa to zero when underflow or zero exponent when not supporting denormals.always @(posedge clk)if (ce)casez({aNan1,bNan1,qNaNOut,aInf1,bInf1,over1|under1})6'b1?????: mo1 = {4'h1,a1[N*4-4-1:0],{N*4{1'b0}}};6'b01????: mo1 = {4'h1,b1[N*4-4-1:0],{N*4{1'b0}}};6'b001???: mo1 = {4'h1,qNaN|3'd4,{N*4{1'b0}}}; // multiply inf * zero6'b0001??: mo1 = 0; // mul inf's6'b00001?: mo1 = 0; // mul inf's6'b000001: mo1 = 0; // mul overflowdefault: mo1 = sig1;endcaseft_delay #(.WID(1),.DEP(DELAY+1)) u10 (.clk(clk), .ce(ce), .i(sa & sb), .o(sign_exe) );delay1 u11 (.clk(clk), .ce(ce), .i(over1), .o(overflow) );delay1 u12 (.clk(clk), .ce(ce), .i(over1), .o(inf) );delay1 u13 (.clk(clk), .ce(ce), .i(under1), .o(underflow) );ft_delay #(.WID(1),.DEP(3)) u18b (.clk(clk), .ce(ce), .i(done1), .o(done1a) );assign o.nan = aNan1|bNan1|qNaNOut;assign o.qnan = qNaNOut|aqnan|bqnan;assign o.snan = qNaNOut ? 1'b0 : asnan|bsnan;assign o.infinity = aInf1|bInf1|over;assign o.sign = so1;assign o.exp = xo1;assign o.sig = {mo1,8'h00};assign done = done1&done1a;endmodule// Multiplier with normalization and rounding.module DFPMultiply128nr(clk, ce, ld, a, b, o, rm, sign_exe, inf, overflow, underflow, done);localparam N=34;input clk;input ce;input ld;input DFP128 a, b;output DFP128 o;input [2:0] rm;output sign_exe;output inf;output overflow;output underflow;output done;wire done1, done1a;DFP128UD o1;wire sign_exe1, inf1, overflow1, underflow1;DFP128UN fpn0;DFPMultiply128 u1 (clk, ce, ld, a, b, o1, sign_exe1, inf1, overflow1, underflow1, done1);DFPNormalize128 u2(.clk(clk), .ce(ce), .under_i(underflow1), .i(o1), .o(fpn0) );DFPRound128 u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );delay2 #(1) u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe));delay2 #(1) u5(.clk(clk), .ce(ce), .i(inf1), .o(inf));delay2 #(1) u6(.clk(clk), .ce(ce), .i(overflow1), .o(overflow));delay2 #(1) u7(.clk(clk), .ce(ce), .i(underflow1), .o(underflow));ft_delay #(.WID(1),.DEP(12)) u10 (.clk(clk), .ce(ce), .i(done1), .o(done1a) );assign done = done1 & done1a;endmodule
