URL
https://opencores.org/ocsvn/ft816float/ft816float/trunk
Subversion Repositories ft816float
[/] [ft816float/] [trunk/] [rtl/] [verilog2/] [DFPNormalize128.sv] - Rev 57
Compare with Previous | Blame | View Log
// ============================================================================// __// \\__/ o\ (C) 2006-2020 Robert Finch, Waterloo// \ __ / All rights reserved.// \/_// robfinch<remove>@finitron.ca// ||//// DFPNormalize128.sv// - decimal floating point normalization unit// - eight cycle latency// - parameterized width////// This source file is free software: you can redistribute it and/or modify// it under the terms of the GNU Lesser General Public License as published// by the Free Software Foundation, either version 3 of the License, or// (at your option) any later version.//// This source file is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU General Public License for more details.//// You should have received a copy of the GNU General Public License// along with this program. If not, see <http://www.gnu.org/licenses/>.//// This unit takes a floating point number in an intermediate// format and normalizes it. No normalization occurs// for NaN's or infinities. The unit has a two cycle latency.//// The mantissa is assumed to start with two whole bits on// the left. The remaining bits are fractional.//// The width of the incoming format is reduced via a generation// of sticky bit in place of the low order fractional bits.//// On an underflowed input, the incoming exponent is assumed// to be negative. A right shift is needed.// ============================================================================import DFPPkg::*;module DFPNormalize128(clk, ce, i, o, under_i, under_o, inexact_o);parameter N=34;input clk;input ce;input DFP128UD i; // expanded format inputoutput DFP128UN o; // normalized output + guard, sticky and round bits, + 1 whole digitinput under_i;output under_o;output inexact_o;integer n;// ----------------------------------------------------------------------------// No Clock required// ----------------------------------------------------------------------------reg [13:0] xo0;reg so0;reg sx0;reg nan0, qnan0, snan0;reg inf0;always @*xo0 <= i.exp;always @*so0 <= i.sign; // sign doesn't changealways @*nan0 <= i.nan;always @*qnan0 <= i.qnan;always @*snan0 <= i.snan;always @*inf0 <= i.infinity;// ----------------------------------------------------------------------------// Clock #1// - Capture exponent information// ----------------------------------------------------------------------------reg xInf1a, xInf1b, xInf1c;DFP128UD i1;always @(posedge clk)if (ce)i1 <= i;always @(posedge clk)if (ce) xInf1a <= xo0==14'h2FFF & !under_i;always @(posedge clk)if (ce) xInf1b <= xo0==14'h2FFE & !under_i;always @(posedge clk)if (ce) xInf1c <= xo0==14'h2FFF;// ----------------------------------------------------------------------------// Clock #2// - determine exponent increment// Since the there are *three* whole digits in the incoming format// the number of whole digits needs to be reduced. If the MSB is// set, then increment the exponent and no shift is needed.// ----------------------------------------------------------------------------wire xInf2c, xInf2b;wire [13:0] xo2;reg incExpByOne2;delay #(.WID(1),.DEP(1)) u21 (.clk(clk), .ce(ce), .i(xInf1c), .o(xInf2c));delay #(.WID(1),.DEP(1)) u22 (.clk(clk), .ce(ce), .i(xInf1b), .o(xInf2b));delay #(.WID(14),.DEP(2)) u23 (.clk(clk), .ce(ce), .i(xo0), .o(xo2));delay #(.WID(1),.DEP(2)) u24 (.clk(clk), .ce(ce), .i(under_i), .o(under2));always @(posedge clk)if (ce) incExpByOne2 <= !xInf1a & |i1.sig[279:276];// ----------------------------------------------------------------------------// Clock #3// - increment exponent// - detect a zero mantissa// ----------------------------------------------------------------------------wire incExpByOne3;DFP128UD i3;reg [13:0] xo3;reg zeroMan3;delay #(.WID(1),.DEP(1)) u32 (.clk(clk), .ce(ce), .i(incExpByOne2), .o(incExpByOne3));delay #(.WID($bits(i3)),.DEP(3)) u33 (.clk(clk), .ce(ce), .i(i), .o(i3));wire [13:0] xo2a = xo2 + 1'd1;always @(posedge clk)if (ce) xo3 <= (incExpByOne2 ? xo2a : xo2);always @(posedge clk)if(ce) zeroMan3 <= 1'b0;// ----------------------------------------------------------------------------// Clock #4// - Shift mantissa left// - If infinity is reached then set the mantissa to zero// shift mantissa left to reduce to a single whole digit// - create sticky bit// ----------------------------------------------------------------------------reg [(N+2)*4-1:0] mo4;reg inexact4;always @(posedge clk)if(ce)casez({zeroMan3,incExpByOne3})2'b1?: mo4 <= 1'd0;2'b01: mo4 <= {i3[(N+1)*4*2-1:(N+1)*4],3'b0,|i3[(N+1)*4-1:0]};default: mo4 <= {i3[(N+1)*4*2-1-4:N*4],3'b0,|i3[N*4-1:0]};endcasealways @(posedge clk)if(ce)casez({zeroMan3,incExpByOne3})2'b1?: inexact4 <= 1'd0;2'b01: inexact4 <= |i3[(N+1)*4-1:0];default: inexact4 <= |i3[N*4-1:0];endcase// ----------------------------------------------------------------------------// Clock edge #5// - count leading zeros// ----------------------------------------------------------------------------reg [7:0] leadingZeros5;wire [13:0] xo5;wire xInf5;delay #(.WID(14),.DEP(2)) u51 (.clk(clk), .ce(ce), .i(xo3), .o(xo5));delay #(.WID(1),.DEP(3)) u52 (.clk(clk), .ce(ce), .i(xInf2c), .o(xInf5) );/* Lookup table based leading zero count modules give slightly betterperformance but cases must be coded.generatebeginif (FPWID <= 32) begincntlz32Reg clz0 (.clk(clk), .ce(ce), .i({mo4,4'b0}), .o(leadingZeros5) );assign leadingZeros5[7:6] = 2'b00;endelse if (FPWID<=64) beginassign leadingZeros5[7] = 1'b0;cntlz64Reg clz0 (.clk(clk), .ce(ce), .i({mo4,7'h0}), .o(leadingZeros5) );endelse if (FPWID<=80) beginassign leadingZeros5[7] = 1'b0;cntlz80Reg clz0 (.clk(clk), .ce(ce), .i({mo4,11'b0}), .o(leadingZeros5) );endelse if (FPWID<=84) beginassign leadingZeros5[7] = 1'b0;cntlz96Reg clz0 (.clk(clk), .ce(ce), .i({mo4,23'b0}), .o(leadingZeros5) );endelse if (FPWID<=96) beginassign leadingZeros5[7] = 1'b0;cntlz96Reg clz0 (.clk(clk), .ce(ce), .i({mo4,11'b0}), .o(leadingZeros5) );endelse if (FPWID<=128)cntlz128Reg clz0 (.clk(clk), .ce(ce), .i({mo4,11'b0}), .o(leadingZeros5) );endendgenerate*/// Sideways add.// Normally there would be only one to two leading zeros. It is tempting then// to check for only one or two. But, denormalized numbers might have more// leading zeros. If denormals were not supported this could be made smaller// and faster.`ifdef SUPPORT_DENORMALSreg [7:0] lzc;reg got_one;always @*begingot_one = 1'b0;lzc = 8'h00;for (n = (N+2)*4-1; n >= 0; n = n - 4) beginif (!got_one) beginif (mo4[n]|mo4[n-1]|mo4[n-2]|mo4[n-3])got_one = 1'b1;elselzc = lzc + 1'b1;endendendalways @(posedge clk)if (ce) leadingZeros5 <= lzc;`elsewire [7:0] lead2 = mo4[(N+2)*4-1:N*4];always @(posedge clk)if (ce)casez(lead2)8'b00000000: leadingZeros5 <= 8'd2;8'b0000????: leadingZeros5 <= 8'd1;default: leadingZeros5 <= 8'd0;endcase`endif// ----------------------------------------------------------------------------// Clock edge #6// - Compute how much we want to decrement exponent by// - compute amount to shift left and right// - at infinity the exponent can't be incremented, so we can't shift right// otherwise it was an underflow situation so the exponent was negative// shift amount needs to be negated for shift register// If the exponent underflowed, then the shift direction must be to the// right regardless of mantissa bits; the number is denormalized.// Otherwise the shift direction must be to the left.// ----------------------------------------------------------------------------reg [7:0] lshiftAmt6;reg [7:0] rshiftAmt6;wire rightOrLeft6; // 0=left,1=rightwire xInf6;wire [13:0] xo6;wire [(N+2)*4-1:0] mo6;wire zeroMan6;vtdl #(1) u61 (.clk(clk), .ce(ce), .a(4'd5), .d(under_i), .q(rightOrLeft6) );delay #(.WID(14),.DEP(1)) u62 (.clk(clk), .ce(ce), .i(xo5), .o(xo6));delay #(.WID((N+2)*4),.DEP(2)) u63 (.clk(clk), .ce(ce), .i(mo4), .o(mo6) );delay #(.WID(1),.DEP(1)) u64 (.clk(clk), .ce(ce), .i(xInf5), .o(xInf6) );delay #(.WID(1),.DEP(3)) u65 (.clk(clk), .ce(ce), .i(zeroMan3), .o(zeroMan6));delay #(.WID(1),.DEP(5)) u66 (.clk(clk), .ce(ce), .i(sx0), .o(sx5) );always @(posedge clk)if (ce) lshiftAmt6 <= {leadingZeros5 > xo5 ? xo5 : leadingZeros5,2'b0};always @(posedge clk)if (ce) rshiftAmt6 <= {xInf5 ? 1'd0 : $signed(xo5) > 14'd0 ? 8'd0 : ~xo5+2'd1,2'b00}; // xo2 is negative !// ----------------------------------------------------------------------------// Clock edge #7// - figure exponent// - shift mantissa// - figure sticky bit// ----------------------------------------------------------------------------reg [15:0] xo7;wire rightOrLeft7;reg [(N+2)*4-1:0] mo7l, mo7r;reg St6,St7;delay #(.WID(1),.DEP(1)) u71 (.clk(clk), .ce(ce), .i(rightOrLeft6), .o(rightOrLeft7));wire [13:0] xo7d = xo6 - lshiftAmt6;always @(posedge clk)if (ce)xo7 <= zeroMan6 ? xo6 :xInf6 ? xo6 : // an infinite exponent is either a NaN or infinity; no need to changerightOrLeft6 ? 1'd0 : // on a right shift, the exponent was negative, it's being made to zeroxo7d; // on a left shift, the exponent can't be decremented below zeroalways @(posedge clk)if (ce) mo7r <= mo6 >> rshiftAmt6;always @(posedge clk)if (ce) mo7l <= mo6 << lshiftAmt6;// The sticky bit is set if the bits shifted out on a right shift are set.always @*beginSt6 = 1'b0;for (n = 0; n < (N+2)*4; n = n + 1)if (n <= rshiftAmt6 + 1) St6 = St6|mo6[n];endalways @(posedge clk)if (ce) St7 <= St6;// ----------------------------------------------------------------------------// Clock edge #8// - select mantissa// ----------------------------------------------------------------------------wire so,sxo,nano,info,qnano,snano;wire [13:0] xo;reg [(N+2)*4-1:0] mo;vtdl #(1) u81 (.clk(clk), .ce(ce), .a(4'd7), .d(so0), .q(so) );delay #(.WID(14),.DEP(1)) u82 (.clk(clk), .ce(ce), .i(xo7), .o(xo));vtdl #(.WID(1)) u83 (.clk(clk), .ce(ce), .a(4'd3), .d(inexact4), .q(inexact_o));delay #(.WID(1),.DEP(1)) u84 (.clk(clk), .ce(ce), .i(rightOrLeft7), .o(under_o));vtdl #(1) u86 (.clk(clk), .ce(ce), .a(4'd7), .d(nan0), .q(nano) );vtdl #(1) u87 (.clk(clk), .ce(ce), .a(4'd7), .d(qnan0), .q(qnano) );vtdl #(1) u88 (.clk(clk), .ce(ce), .a(4'd7), .d(snan0), .q(snano) );vtdl #(1) u89 (.clk(clk), .ce(ce), .a(4'd7), .d(inf0), .q(info) );always @(posedge clk)if (ce) mo <= rightOrLeft7 ? mo7r|{St7,4'b0} : mo7l;assign o.nan = nano;assign o.qnan = qnano;assign o.snan = snano;assign o.infinity = info;assign o.sign = so;assign o.exp = xo;assign o.sig = mo[(N+2)*4-1:4];endmodule
