URL
https://opencores.org/ocsvn/ft816float/ft816float/trunk
Subversion Repositories ft816float
[/] [ft816float/] [trunk/] [rtl/] [verilog2/] [fpAddsub.sv] - Rev 48
Go to most recent revision | Compare with Previous | Blame | View Log
// ============================================================================
// __
// \\__/ o\ (C) 2006-2020 Robert Finch, Waterloo
// \ __ / All rights reserved.
// \/_// robfinch<remove>@finitron.ca
// ||
//
// fpAddsub.sv
// - floating point adder/subtracter
// - two cycle latency
// - can issue every clock cycle
// - parameterized width
// - IEEE 754 representation
//
//
// This source file is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This source file is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// ============================================================================
import fp::*;
module fpAddsub(clk, ce, rm, op, a, b, o);
input clk; // system clock
input ce; // core clock enable
input [2:0] rm; // rounding mode
input op; // operation 0 = add, 1 = subtract
input [MSB:0] a; // operand a
input [MSB:0] b; // operand b
output [EX:0] o; // output
// variables
wire so; // sign output
wire [EMSB:0] xo; // de normalized exponent output
reg [EMSB:0] xo1; // de normalized exponent output
wire [FX:0] mo; // mantissa output
reg [FX:0] mo1; // mantissa output
assign o = {so,xo,mo};
// operands sign,exponent,mantissa
wire sa, sb;
wire [EMSB:0] xa, xb;
wire [FMSB:0] ma, mb;
wire [FMSB+1:0] fracta, fractb;
wire [FMSB+1:0] fracta1, fractb1;
// which has greater magnitude ? Used for sign calc
wire xa_gt_xb = xa > xb;
wire xa_gt_xb1;
wire a_gt_b = xa_gt_xb || (xa==xb && ma > mb);
wire a_gt_b1;
wire az, bz; // operand a,b is zero
wire adn, bdn; // a,b denormalized ?
wire xaInf, xbInf;
wire aInf, bInf, aInf1, bInf1;
wire aNan, bNan, aNan1, bNan1;
wire [EMSB:0] xad = xa|adn; // operand a exponent, compensated for denormalized numbers
wire [EMSB:0] xbd = xb|bdn; // operand b exponent, compensated for denormalized numbers
fpDecomp u1a (.i(a), .sgn(sa), .exp(xa), .man(ma), .fract(fracta), .xz(adn), .vz(az), .xinf(xaInf), .inf(aInf), .nan(aNan) );
fpDecomp u1b (.i(b), .sgn(sb), .exp(xb), .man(mb), .fract(fractb), .xz(bdn), .vz(bz), .xinf(xbInf), .inf(bInf), .nan(bNan) );
// Figure out which operation is really needed an add or
// subtract ?
// If the signs are the same, use the orignal op,
// otherwise flip the operation
// a + b = add,+
// a + -b = sub, so of larger
// -a + b = sub, so of larger
// -a + -b = add,-
// a - b = sub, so of larger
// a - -b = add,+
// -a - b = add,-
// -a - -b = sub, so of larger
wire realOp = op ^ sa ^ sb;
wire realOp1;
wire op1;
// Find out if the result will be zero.
wire resZero = (realOp && xa==xb && ma==mb) || // subtract, same magnitude
(az & bz); // both a,b zero
// Compute output exponent
//
// The output exponent is the larger of the two exponents,
// unless a subtract operation is in progress and the two
// numbers are equal, in which case the exponent should be
// zero.
always @(xaInf,xbInf,resZero,xa,xb,xa_gt_xb)
xo1 = (xaInf&xbInf) ? xa : resZero ? 0 : xa_gt_xb ? xa : xb;
// Compute output sign
reg so1;
always @*
case ({resZero,sa,op,sb}) // synopsys full_case parallel_case
4'b0000: so1 <= 0; // + + + = +
4'b0001: so1 <= !a_gt_b; // + + - = sign of larger
4'b0010: so1 <= !a_gt_b; // + - + = sign of larger
4'b0011: so1 <= 0; // + - - = +
4'b0100: so1 <= a_gt_b; // - + + = sign of larger
4'b0101: so1 <= 1; // - + - = -
4'b0110: so1 <= 1; // - - + = -
4'b0111: so1 <= a_gt_b; // - - - = sign of larger
4'b1000: so1 <= 0; // A + B, sign = +
4'b1001: so1 <= rm==3; // A + -B, sign = + unless rounding down
4'b1010: so1 <= rm==3; // A - B, sign = + unless rounding down
4'b1011: so1 <= 0; // +A - -B, sign = +
4'b1100: so1 <= rm==3; // -A + B, sign = + unless rounding down
4'b1101: so1 <= 1; // -A + -B, sign = -
4'b1110: so1 <= 1; // -A - +B, sign = -
4'b1111: so1 <= rm==3; // -A - -B, sign = + unless rounding down
endcase
delay2 #(EMSB+1) d1(.clk(clk), .ce(ce), .i(xo1), .o(xo) );
delay2 #(1) d2(.clk(clk), .ce(ce), .i(so1), .o(so) );
// Compute the difference in exponents, provides shift amount
wire [EMSB:0] xdiff = xa_gt_xb ? xad - xbd : xbd - xad;
wire [6:0] xdif = xdiff > FMSB+3 ? FMSB+3 : xdiff;
wire [6:0] xdif1;
// determine which fraction to denormalize
wire [FMSB+1:0] mfs = xa_gt_xb ? fractb : fracta;
wire [FMSB+1:0] mfs1;
// Determine the sticky bit
wire sticky, sticky1;
generate
begin
if (FPWID==128)
redor128 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
else if (FPWID==96)
redor96 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
else if (FPWID==84)
redor84 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
else if (FPWID==80)
redor80 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
else if (FPWID==64)
redor64 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
else if (FPWID==32)
redor32 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
end
endgenerate
// register inputs to shifter and shift
delay1 #(1) d16(.clk(clk), .ce(ce), .i(sticky), .o(sticky1) );
delay1 #(7) d15(.clk(clk), .ce(ce), .i(xdif), .o(xdif1) );
delay1 #(FMSB+2) d14(.clk(clk), .ce(ce), .i(mfs), .o(mfs1) );
wire [FMSB+3:0] md1 = ({mfs1,2'b0} >> xdif1)|sticky1;
// sync control signals
delay1 #(1) d4 (.clk(clk), .ce(ce), .i(xa_gt_xb), .o(xa_gt_xb1) );
delay1 #(1) d17(.clk(clk), .ce(ce), .i(a_gt_b), .o(a_gt_b1) );
delay1 #(1) d5 (.clk(clk), .ce(ce), .i(realOp), .o(realOp1) );
delay1 #(FMSB+2) d5a(.clk(clk), .ce(ce), .i(fracta), .o(fracta1) );
delay1 #(FMSB+2) d6a(.clk(clk), .ce(ce), .i(fractb), .o(fractb1) );
delay1 #(1) d7 (.clk(clk), .ce(ce), .i(aInf), .o(aInf1) );
delay1 #(1) d8 (.clk(clk), .ce(ce), .i(bInf), .o(bInf1) );
delay1 #(1) d9 (.clk(clk), .ce(ce), .i(aNan), .o(aNan1) );
delay1 #(1) d10(.clk(clk), .ce(ce), .i(bNan), .o(bNan1) );
delay1 #(1) d11(.clk(clk), .ce(ce), .i(op), .o(op1) );
// Sort operands and perform add/subtract
// addition can generate an extra bit, subtract can't go negative
wire [FMSB+3:0] oa = xa_gt_xb1 ? {fracta1,2'b0} : md1;
wire [FMSB+3:0] ob = xa_gt_xb1 ? md1 : {fractb1,2'b0};
wire [FMSB+3:0] oaa = a_gt_b1 ? oa : ob;
wire [FMSB+3:0] obb = a_gt_b1 ? ob : oa;
wire [FMSB+4:0] mab = realOp1 ? oaa - obb : oaa + obb;
wire xoinf = &xo;
always @*
casez({aInf1&bInf1,aNan1,bNan1,xoinf})
4'b1???: mo1 = {1'b0,op1,{FMSB-1{1'b0}},op1,{FMSB{1'b0}}}; // inf +/- inf - generate QNaN on subtract, inf on add
4'b01??: mo1 = {1'b0,fracta1[FMSB+1:0],{FMSB{1'b0}}};
4'b001?: mo1 = {1'b0,fractb1[FMSB+1:0],{FMSB{1'b0}}};
4'b0001: mo1 = 1'd0;
default: mo1 = {mab,{FMSB-1{1'b0}}}; // mab has an extra lead bit and two trailing bits
endcase
delay1 #(FX+1) d3(.clk(clk), .ce(ce), .i(mo1), .o(mo) );
endmodule
module fpAddsubnr(clk, ce, rm, op, a, b, o);
input clk; // system clock
input ce; // core clock enable
input [2:0] rm; // rounding mode
input op; // operation 0 = add, 1 = subtract
input [MSB:0] a; // operand a
input [MSB:0] b; // operand b
output [MSB:0] o; // output
wire [EX:0] o1;
wire [MSB+3:0] fpn0;
fpAddsub #(FPWID) u1 (clk, ce, rm, op, a, b, o1);
fpNormalize #(FPWID) u2(.clk(clk), .ce(ce), .under_i(1'b0), .i(o1), .o(fpn0) );
fpRound #(FPWID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
endmodule
Go to most recent revision | Compare with Previous | Blame | View Log