URL
https://opencores.org/ocsvn/ft816float/ft816float/trunk
Subversion Repositories ft816float
[/] [ft816float/] [trunk/] [rtl/] [verilog2/] [fpAddsub_L10.v] - Rev 60
Go to most recent revision | Compare with Previous | Blame | View Log
// ============================================================================ // __ // \\__/ o\ (C) 2006-2019 Robert Finch, Waterloo // \ __ / All rights reserved. // \/_// robfinch<remove>@finitron.ca // || // // fpAddsub.v // - floating point adder/subtracter // - ten cycle latency // - can issue every clock cycle // - parameterized FPWIDth // - IEEE 754 representation // // // This source file is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This source file is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // // ============================================================================ `include "fpConfig.sv" module fpAddsub_L10(clk, ce, rm, op, a, b, o); parameter FPWID = 128; `include "fpSize.sv" input clk; // system clock input ce; // core clock enable input [2:0] rm; // rounding mode input op; // operation 0 = add, 1 = subtract input [MSB:0] a; // operand a input [MSB:0] b; // operand b output [EX:0] o; // output wire so; // sign output wire [EMSB:0] xo; // de normalized exponent output reg [FX:0] mo; // mantissa output assign o = {so,xo,mo}; // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // Clock edge #1 // - Decompose inputs into more digestible values. // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - wire [MSB:0] a1; wire [MSB:0] b1; wire sa1, sb1; wire [EMSB:0] xa1, xb1; wire [FMSB:0] ma1, mb1; wire [FMSB+1:0] fracta1, fractb1; wire adn1, bdn1; // a,b denormalized ? wire xaInf1, xbInf1; wire aInf1, bInf1; wire aNan1, bNan1; wire az1, bz1; // operand a,b is zero wire op1; fpDecompReg #(FPWID) u1a (.clk(clk), .ce(ce), .i(a), .o(a1), .sgn(sa1), .exp(xa1), .man(ma1), .fract(fracta1), .xz(adn1), .vz(az1), .xinf(xaInf1), .inf(aInf1), .nan(aNan1) ); fpDecompReg #(FPWID) u1b (.clk(clk), .ce(ce), .i(b), .o(b1), .sgn(sb1), .exp(xb1), .man(mb1), .fract(fractb1), .xz(bdn1), .vz(bz1), .xinf(xbInf1), .inf(bInf1), .nan(bNan1) ); delay1 #(1) dop1(.clk(clk), .ce(ce), .i(op), .o(op1) ); // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // Clock edge #2 // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - reg xabeq2; reg mabeq2; reg anbz2; reg xabInf2; reg anbInf2; wire [EMSB:0] xa2, xb2; wire [FMSB:0] ma2, mb2; // operands sign,exponent,mantissa wire [FMSB+1:0] fracta2, fractb2; wire az2, bz2; // operand a,b is zero reg xa_gt_xb2; reg var2; reg [EMSB:0] xad2; reg [EMSB:0] xbd2; reg realOp2; delay1 #(EMSB+1) dxa2(.clk(clk), .ce(ce), .i(xa1), .o(xa2) ); delay1 #(EMSB+1) dxb2(.clk(clk), .ce(ce), .i(xb1), .o(xb2) ); delay1 #(FMSB+1) dma2(.clk(clk), .ce(ce), .i(ma1), .o(ma2) ); delay1 #(FMSB+1) dmb2(.clk(clk), .ce(ce), .i(mb1), .o(mb2) ); delay1 #(1) daz2(.clk(clk), .ce(ce), .i(az1), .o(az2) ); delay1 #(1) dbz2(.clk(clk), .ce(ce), .i(bz1), .o(bz2) ); delay1 #(FMSB+2) dfracta2(.clk(clk), .ce(ce), .i(fracta1), .o(fracta2) ); delay1 #(FMSB+2) dfractb2(.clk(clk), .ce(ce), .i(fractb1), .o(fractb2) ); always @(posedge clk) if (ce) xa_gt_xb2 <= xa1 > xb1; always @(posedge clk) if (ce) var2 <= (xa1==xb1 && ma1 > mb1); always @(posedge clk) if (ce) xad2 <= xa1|adn1; // operand a exponent, compensated for denormalized numbers always @(posedge clk) if (ce) xbd2 <= xb1|bdn1; // operand b exponent, compensated for denormalized numbers always @(posedge clk) if (ce) xabeq2 <= xa1==xb1; always @(posedge clk) if (ce) mabeq2 <= ma1==mb1; always @(posedge clk) if (ce) anbz2 <= az1 & bz1; always @(posedge clk) if (ce) xabInf2 <= xaInf1 & xbInf1; always @(posedge clk) if (ce) anbInf2 <= aInf1 & bInf1; // Figure out which operation is really needed an add or // subtract ? // If the signs are the same, use the orignal op, // otherwise flip the operation // a + b = add,+ // a + -b = sub, so of larger // -a + b = sub, so of larger // -a + -b = add,- // a - b = sub, so of larger // a - -b = add,+ // -a - b = add,- // -a - -b = sub, so of larger always @(posedge clk) if (ce) realOp2 <= op1 ^ sa1 ^ sb1; // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // Clock edge #3 // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - wire [EMSB:0] xa3, xb3; wire xa_gt_xb3; reg x_gt_b3; wire xabInf3; wire sa3,sb3; wire op3; wire [2:0] rm3; reg [EMSB:0] xdiff3; // which has greater magnitude ? Used for sign calc reg a_gt_b3; reg resZero3; reg [FMSB+1:0] mfs3; delay1 #(EMSB+1) dxa3(.clk(clk), .ce(ce), .i(xa2), .o(xa3)); delay1 #(EMSB+1) dxb3(.clk(clk), .ce(ce), .i(xb2), .o(xb3)); delay1 #(1) dxabInf2(.clk(clk), .ce(ce), .i(xabInf2), .o(xabInf3)); delay1 #(1) dxagtxb2(.clk(clk), .ce(ce), .i(xa_gt_xb2), .o(xa_gt_xb3)); delay2 #(1) dsa2(.clk(clk), .ce(ce), .i(sa1), .o(sa3)); delay2 #(1) dsb2(.clk(clk), .ce(ce), .i(sb1), .o(sb3)); delay2 #(1) dop2(.clk(clk), .ce(ce), .i(op1), .o(op3)); delay3 #(3) drm2(.clk(clk), .ce(ce), .i(rm), .o(rm3)); always @(posedge clk) if (ce) a_gt_b3 <= xa_gt_xb2 || var2; // Find out if the result will be zero. always @(posedge clk) if (ce) resZero3 <= (realOp2 & xabeq2 & mabeq2) | anbz2; // subtract, same magnitude, both a,b zero // Compute the difference in exponents, provides shift amount always @(posedge clk) if (ce) xdiff3 <= xa_gt_xb2 ? xad2 - xbd2 : xbd2 - xad2; // determine which fraction to denormalize always @(posedge clk) if (ce) mfs3 <= xa_gt_xb2 ? fractb2 : fracta2; // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // Clock edge #4 // Compute output exponent // // The output exponent is the larger of the two exponents, unless a subtract // operation is in progress and the two numbers are equal, in which case the // exponent should be zero. // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - reg [EMSB:0] xdif4; wire [FMSB+1:0] mfs4; reg [EMSB:0] xo4; // de normalized exponent output reg so4; always @(posedge clk) if (ce) xo4 <= xabInf3 ? xa3 : resZero3 ? {EMSB+1{1'b0}} : xa_gt_xb3 ? xa3 : xb3; // Compute output sign always @(posedge clk) if (ce) case ({resZero3,sa3,op3,sb3}) // synopsys full_case parallel_case 4'b0000: so4 <= 0; // + + + = + 4'b0001: so4 <= !a_gt_b3; // + + - = sign of larger 4'b0010: so4 <= !a_gt_b3; // + - + = sign of larger 4'b0011: so4 <= 0; // + - - = + 4'b0100: so4 <= a_gt_b3; // - + + = sign of larger 4'b0101: so4 <= 1; // - + - = - 4'b0110: so4 <= 1; // - - + = - 4'b0111: so4 <= a_gt_b3; // - - - = sign of larger 4'b1000: so4 <= 0; // A + B, sign = + 4'b1001: so4 <= rm3==3'd3; // A + -B, sign = + unless rounding down 4'b1010: so4 <= rm3==3'd3; // A - B, sign = + unless rounding down 4'b1011: so4 <= 0; // +A - -B, sign = + 4'b1100: so4 <= rm3==3'd3; // -A + B, sign = + unless rounding down 4'b1101: so4 <= 1; // -A + -B, sign = - 4'b1110: so4 <= 1; // -A - +B, sign = - 4'b1111: so4 <= rm3==3'd3; // -A - -B, sign = + unless rounding down endcase always @(posedge clk) if (ce) xdif4 <= xdiff3 > FMSB+3 ? FMSB+3 : xdiff3; delay1 #(FMSB+2) dmsf3(.clk(clk), .ce(ce), .i(mfs3), .o(mfs4)); // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // Clock edge #5 // Determine the sticky bit // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - wire [EMSB:0] xdif5; wire [FMSB+1:0] mfs5; wire sticky, sticky5; // register inputs to shifter and shift delay1 #(1) dstky4(.clk(clk), .ce(ce), .i(sticky), .o(sticky5) ); delay1 #(EMSB+1) dxdif4(.clk(clk), .ce(ce), .i(xdif4), .o(xdif5) ); delay1 #(FMSB+2) dmsf4(.clk(clk), .ce(ce), .i(mfs4), .o(mfs5)); generate begin if (FPWID+`EXTRA_BITS==128) redor128 u1 (.a(xdif4), .b({mfs4,2'b0}), .o(sticky) ); else if (FPWID+`EXTRA_BITS==96) redor96 u1 (.a(xdif4), .b({mfs4,2'b0}), .o(sticky) ); else if (FPWID+`EXTRA_BITS==84) redor84 u1 (.a(xdif4), .b({mfs4,2'b0}), .o(sticky) ); else if (FPWID+`EXTRA_BITS==80) redor80 u1 (.a(xdif4), .b({mfs4,2'b0}), .o(sticky) ); else if (FPWID+`EXTRA_BITS==64) redor64 u1 (.a(xdif4), .b({mfs4,2'b0}), .o(sticky) ); else if (FPWID+`EXTRA_BITS==40) redor40 u1 (.a(xdif4), .b({mfs4,2'b0}), .o(sticky) ); else if (FPWID+`EXTRA_BITS==32) redor32 u1 (.a(xdif4), .b({mfs4,2'b0}), .o(sticky) ); end endgenerate // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // Clock edge #6 // Shift (denormalize) // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - reg [FMSB+3:0] md6; wire xa_gt_xb6; wire [FMSB+1:0] fracta6, fractb6; delay3 #(1) dxagtxb5(.clk(clk), .ce(ce), .i(xa_gt_xb3), .o(xa_gt_xb6)); delay4 #(FMSB+2) dfracta5(.clk(clk), .ce(ce), .i(fracta2), .o(fracta6) ); delay4 #(FMSB+2) dfractb5(.clk(clk), .ce(ce), .i(fractb2), .o(fractb6) ); always @(posedge clk) if (ce) md6 <= ({mfs5,2'b0} >> xdif5)|sticky5; // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // Clock edge #7 // Sort operands // addition can generate an extra bit, subtract can't go negative // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - reg [FMSB+3:0] oa7; reg [FMSB+3:0] ob7; wire a_gt_b7; delay4 #(1) dagtb5(.clk(clk), .ce(ce), .i(a_gt_b3), .o(a_gt_b7)); always @(posedge clk) if (ce) oa7 <= xa_gt_xb6 ? {fracta6,2'b0} : md6; always @(posedge clk) if (ce) ob7 <= xa_gt_xb6 ? md6 : {fractb6,2'b0}; // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // Clock edge #8 // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - reg [FMSB+3:0] oaa8; reg [FMSB+3:0] obb8; wire [EMSB:0] xo8; wire realOp8; vtdl #(.WID(1)) drealop7 (.clk(clk), .ce(ce), .a(4'd5), .d(realOp2), .q(realOp8)); vtdl #(.WID(EMSB+1)) dxo7(.clk(clk), .ce(ce), .a(4'd3), .d(xo4), .q(xo8)); always @(posedge clk) if (ce) oaa8 <= a_gt_b7 ? oa7 : ob7; always @(posedge clk) if (ce) obb8 <= a_gt_b7 ? ob7 : oa7; // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // Clock edge #9 // perform add/subtract // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - reg [FMSB+4:0] mab9; wire anbInf9; wire aNan9, bNan9; wire op9; wire [FMSB+1:0] fracta9, fractb9; wire xo9; reg xinf9; vtdl #(1) danbInf7(.clk(clk), .ce(ce), .a(4'd6), .d(anbInf2), .q(anbInf9)); vtdl #(1) danan8(.clk(clk), .ce(ce), .a(4'd7), .d(aNan1), .q(aNan9)); vtdl #(1) dbnan8(.clk(clk), .ce(ce), .a(4'd7), .d(bNan1), .q(bNan9)); vtdl #(1) dop6(.clk(clk), .ce(ce), .a(4'd5), .d(op3), .q(op9)); delay3 #(FMSB+2) dfracta8(.clk(clk), .ce(ce), .i(fracta6), .o(fracta9) ); delay3 #(FMSB+2) dfractb8(.clk(clk), .ce(ce), .i(fractb6), .o(fractb9) ); always @(posedge clk) if (ce) mab9 <= realOp8 ? oaa8 - obb8 : oaa8 + obb8; always @(posedge clk) if (ce) xinf9 <= xo8 == {EMSB+1{1'b1}}; // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - // Clock edge #10 // Final outputs // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - vtdl #(1) dso6(.clk(clk), .ce(ce), .a(4'd5), .d(so4), .q(so)); vtdl #(.WID(EMSB+1)) dxo6(.clk(clk), .ce(ce), .a(4'd1), .d(xo8), .q(xo)); always @(posedge clk) if (ce) casez({anbInf9,aNan9,bNan9,xinf9}) 4'b1???: mo <= {1'b0,op9,{FMSB-1{1'b0}},op9,{FMSB{1'b0}}}; // inf +/- inf - generate QNaN on subtract, inf on add 4'b01??: mo <= {1'b1,1'b1,fracta9[FMSB-1:0],{FMSB+1{1'b0}}}; // Set MSB of Nan to convert to quiet 4'b001?: mo <= {1'b1,1'b1,fractb9[FMSB-1:0],{FMSB+1{1'b0}}}; 4'b0001: mo <= 1'd0; // exponent hit infinity -> force mantissa to zero default: mo <= {mab9,{FMSB-1{1'b0}}}; // mab has an extra lead bit and two trailing bits endcase endmodule module fpAddsubnr_L10(clk, ce, rm, op, a, b, o); parameter FPWID = 128; `include "fpSize.sv" input clk; // system clock input ce; // core clock enable input [2:0] rm; // rounding mode input op; // operation 0 = add, 1 = subtract input [MSB:0] a; // operand a input [MSB:0] b; // operand b output [MSB:0] o; // output wire [EX:0] o1; wire [MSB+3:0] fpn0; fpAddsub_L10 #(FPWID) u1 (clk, ce, rm, op, a, b, o1); fpNormalize #(FPWID) u2(.clk(clk), .ce(ce), .under_i(1'b0), .i(o1), .o(fpn0) ); fpRound #(FPWID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) ); endmodule
Go to most recent revision | Compare with Previous | Blame | View Log