OpenCores
URL https://opencores.org/ocsvn/ft816float/ft816float/trunk

Subversion Repositories ft816float

[/] [ft816float/] [trunk/] [rtl/] [verilog2/] [fpDiv.v] - Rev 32

Go to most recent revision | Compare with Previous | Blame | View Log

// ============================================================================
//        __
//   \\__/ o\    (C) 2006-2019  Robert Finch, Waterloo
//    \  __ /    All rights reserved.
//     \/_//     robfinch<remove>@finitron.ca
//       ||
//
//	fpDiv.v
//    - floating point divider
//    - parameterized width
//    - IEEE 754 representation
//
//
// This source file is free software: you can redistribute it and/or modify 
// it under the terms of the GNU Lesser General Public License as published 
// by the Free Software Foundation, either version 3 of the License, or     
// (at your option) any later version.                                      
//                                                                          
// This source file is distributed in the hope that it will be useful,      
// but WITHOUT ANY WARRANTY; without even the implied warranty of           
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the            
// GNU General Public License for more details.                             
//                                                                          
// You should have received a copy of the GNU General Public License        
// along with this program.  If not, see <http://www.gnu.org/licenses/>.    
//                                                                          
//	Floating Point Multiplier / Divider
//
//Properties:
//+-inf * +-inf = -+inf    (this is handled by exOver)
//+-inf * 0     = QNaN
//+-0 / +-0      = QNaN
// ============================================================================
 
`include "fpConfig.sv"
`include "fp_defines.v"
//`define GOLDSCHMIDT	1'b1
 
module fpDiv(rst, clk, clk4x, ce, ld, op, a, b, o, done, sign_exe, overflow, underflow);
 
parameter FPWID = 64;
`include "fpSize.sv"
// FADD is a constant that makes the divider width a multiple of four and includes eight extra bits.			
localparam FADD = FPWID==128 ? 9 :
				  FPWID==96 ? 9 :
				  FPWID==84 ? 9 :
				  FPWID==80 ? 9 :
				  FPWID==64 ? 13 :
				  FPWID==52 ? 9 :
				  FPWID==48 ? 10 :
				  FPWID==44 ? 9 :
				  FPWID==42 ? 11 :
				  FPWID==40 ? 8 :
				  FPWID==32 ? 10 :
				  FPWID==24 ? 9 : 11;
 
input rst;
input clk;
input clk4x;
input ce;
input ld;
input op;
input [MSB:0] a, b;
output [EX:0] o;
output done;
output sign_exe;
output overflow;
output underflow;
 
// registered outputs
reg sign_exe=0;
reg inf=0;
reg	overflow=0;
reg	underflow=0;
 
reg so;
reg [EMSB:0] xo;
reg [FX:0] mo;
assign o = {so,xo,mo};
 
// constants
wire [EMSB:0] infXp = {EMSB+1{1'b1}};	// infinite / NaN - all ones
// The following is the value for an exponent of zero, with the offset
// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.
wire [EMSB:0] bias = {1'b0,{EMSB{1'b1}}};	//2^0 exponent
// The following is a template for a quiet nan. (MSB=1)
wire [FMSB:0] qNaN  = {1'b1,{FMSB{1'b0}}};
 
// variables
wire [EMSB+2:0] ex1;	// sum of exponents
`ifndef GOLDSCHMIDT
wire [(FMSB+FADD)*2-1:0] divo;
`else
wire [(FMSB+5)*2-1:0] divo;
`endif
 
// Operands
wire sa, sb;			// sign bit
wire [EMSB:0] xa, xb;	// exponent bits
wire [FMSB+1:0] fracta, fractb;
wire a_dn, b_dn;			// a/b is denormalized
wire az, bz;
wire aInf, bInf;
wire aNan,bNan;
wire done1;
wire signed [7:0] lzcnt;
 
// -----------------------------------------------------------
// - decode the input operands
// - derive basic information
// - calculate exponent
// - calculate fraction
// -----------------------------------------------------------
 
fpDecomp #(FPWID) u1a (.i(a), .sgn(sa), .exp(xa), .fract(fracta), .xz(a_dn), .vz(az), .inf(aInf), .nan(aNan) );
fpDecomp #(FPWID) u1b (.i(b), .sgn(sb), .exp(xb), .fract(fractb), .xz(b_dn), .vz(bz), .inf(bInf), .nan(bNan) );
 
// Compute the exponent.
// - correct the exponent for denormalized operands
// - adjust the difference by the bias (add 127)
// - also factor in the different decimal position for division
`ifndef GOLDSCHMIDT
assign ex1 = (xa|a_dn) - (xb|b_dn) + bias + FMSB + (FADD-1) - lzcnt - 8'd1;
`else
assign ex1 = (xa|a_dn) - (xb|b_dn) + bias + FMSB - lzcnt + 8'd4;
`endif
 
// check for exponent underflow/overflow
wire under = ex1[EMSB+2];	// MSB set = negative exponent
wire over = (&ex1[EMSB:0] | ex1[EMSB+1]) & !ex1[EMSB+2];
 
// Perform divide
// Divider width must be a multiple of four
`ifndef GOLDSCHMIDT
fpdivr16 #(FMSB+FADD) u2 (.clk(clk), .ld(ld), .a({3'b0,fracta,8'b0}), .b({3'b0,fractb,8'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));
//fpdivr2 #(FMSB+FADD) u2 (.clk4x(clk4x), .ld(ld), .a({3'b0,fracta,8'b0}), .b({3'b0,fractb,8'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));
wire [(FMSB+FADD)*2-1:0] divo1 = divo[(FMSB+FADD)*2-1:0] << (lzcnt-2);
`else
DivGoldschmidt #(.WID(FMSB+6),.WHOLE(1),.POINTS(FMSB+5))
	u2 (.rst(rst), .clk(clk), .ld(ld), .a({fracta,4'b0}), .b({fractb,4'b0}), .q(divo), .done(done1), .lzcnt(lzcnt));
wire [(FMSB+6)*2+1:0] divo1 =
	lzcnt > 8'd5 ? divo << (lzcnt-8'd6) :
	divo >> (8'd6-lzcnt);
	;
`endif
delay1 #(1) u3 (.clk(clk), .ce(ce), .i(done1), .o(done));
 
 
// determine when a NaN is output
wire qNaNOut = (az&bz)|(aInf&bInf);
 
always @(posedge clk)
// Simulation likes to see these values reset to zero on reset. Otherwise the
// values propagate in sim as X's.
if (rst) begin
	xo <= 1'd0;
	mo <= 1'd0;
	so <= 1'd0;
	sign_exe <= 1'd0;
	overflow <= 1'd0;
	underflow <= 1'd0;
end
else if (ce) begin
		if (done1) begin
			casez({qNaNOut|aNan|bNan,bInf,bz,over,under})
			5'b1????:		xo <= infXp;	// NaN exponent value
			5'b01???:		xo <= 1'd0;		// divide by inf
			5'b001??:		xo <= infXp;	// divide by zero
			5'b0001?:		xo <= infXp;	// overflow
			5'b00001:		xo <= 1'd0;		// underflow
			default:		xo <= ex1;	// normal or underflow: passthru neg. exp. for normalization
			endcase
 
			casez({aNan,bNan,qNaNOut,bInf,bz,over,aInf&bInf,az&bz})
			8'b1???????:    mo <= {1'b1,a[FMSB:0],{FMSB+1{1'b0}}};
			8'b01??????:    mo <= {1'b1,b[FMSB:0],{FMSB+1{1'b0}}};
			8'b001?????:	mo <= {1'b1,qNaN[FMSB:0]|{aInf,1'b0}|{az,bz},{FMSB+1{1'b0}}};
			8'b0001????:	mo <= 1'd0;	// div by inf
			8'b00001???:	mo <= 1'd0;	// div by zero
			8'b000001??:	mo <= 1'd0;	// Inf exponent
			8'b0000001?:	mo <= {1'b1,qNaN|`QINFDIV,{FMSB+1{1'b0}}};	// infinity / infinity
			8'b00000001:	mo <= {1'b1,qNaN|`QZEROZERO,{FMSB+1{1'b0}}};	// zero / zero
`ifndef GOLDSCHMIDT
			default:		mo <= divo1[(FMSB+FADD)*2-1:(FADD-2)*2-2];	// plain div
`else
			default:		mo <= divo1[(FMSB+6)*2+1:2];	// plain div
`endif
			endcase
 
			so  		<= sa ^ sb;
			sign_exe 	<= sa & sb;
			overflow	<= over;
			underflow 	<= under;
		end
	end
 
endmodule
 
module fpDivnr(rst, clk, clk4x, ce, ld, op, a, b, o, rm, done, sign_exe, inf, overflow, underflow);
parameter FPWID=64;
`include "fpSize.sv"
 
input rst;
input clk;
input clk4x;
input ce;
input ld;
input op;
input  [MSB:0] a, b;
output [MSB:0] o;
input [2:0] rm;
output sign_exe;
output done;
output inf;
output overflow;
output underflow;
 
wire [EX:0] o1;
wire sign_exe1, inf1, overflow1, underflow1;
wire [MSB+3:0] fpn0;
wire done1;
 
fpDiv       #(FPWID) u1 (rst, clk, clk4x, ce, ld, op, a, b, o1, done1, sign_exe1, overflow1, underflow1);
fpNormalize #(FPWID) u2(.clk(clk), .ce(ce), .under_i(underflow1), .i(o1), .o(fpn0) );
fpRound     #(FPWID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
delay2      #(1)   u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe));
delay2      #(1)   u5(.clk(clk), .ce(ce), .i(inf1), .o(inf));
delay2      #(1)   u6(.clk(clk), .ce(ce), .i(overflow1), .o(overflow));
delay2      #(1)   u7(.clk(clk), .ce(ce), .i(underflow1), .o(underflow));
vtdl		  	#(1)   u8(.clk(clk), .ce(ce), .a(4'd13), .d(done1), .q(done));
endmodule
 
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.