URL
https://opencores.org/ocsvn/ft816float/ft816float/trunk
Subversion Repositories ft816float
[/] [ft816float/] [trunk/] [rtl/] [verilog2/] [fpDivide.sv] - Rev 49
Compare with Previous | Blame | View Log
// ============================================================================// __// \\__/ o\ (C) 2006-2020 Robert Finch, Waterloo// \ __ / All rights reserved.// \/_// robfinch<remove>@finitron.ca// ||//// fpDivide.sv// - floating point divider// - parameterized width// - IEEE 754 representation////// BSD 3-Clause License// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// 1. Redistributions of source code must retain the above copyright notice, this// list of conditions and the following disclaimer.//// 2. Redistributions in binary form must reproduce the above copyright notice,// this list of conditions and the following disclaimer in the documentation// and/or other materials provided with the distribution.//// 3. Neither the name of the copyright holder nor the names of its// contributors may be used to endorse or promote products derived from// this software without specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.//// Floating Point Divider////Properties://+-inf * +-inf = -+inf (this is handled by exOver)//+-inf * 0 = QNaN//+-0 / +-0 = QNaN// ============================================================================import fp::*;//`define GOLDSCHMIDT 1'b1module fpDivide(rst, clk, clk4x, ce, ld, op, a, b, o, done, sign_exe, overflow, underflow);// FADD is a constant that makes the divider width a multiple of four and includes eight extra bits.localparam FADD = FPWID==128 ? 9 :FPWID==96 ? 9 :FPWID==84 ? 9 :FPWID==80 ? 9 :FPWID==64 ? 13 :FPWID==52 ? 9 :FPWID==48 ? 10 :FPWID==44 ? 9 :FPWID==42 ? 11 :FPWID==40 ? 8 :FPWID==32 ? 10 :FPWID==24 ? 9 : 11;input rst;input clk;input clk4x;input ce;input ld;input op;input [MSB:0] a, b;output [EX:0] o;output done;output sign_exe;output overflow;output underflow;// registered outputsreg sign_exe=0;reg inf=0;reg overflow=0;reg underflow=0;reg so;reg [EMSB:0] xo;reg [FX:0] mo;assign o = {so,xo,mo};// constantswire [EMSB:0] infXp = {EMSB+1{1'b1}}; // infinite / NaN - all ones// The following is the value for an exponent of zero, with the offset// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.wire [EMSB:0] bias = {1'b0,{EMSB{1'b1}}}; //2^0 exponent// The following is a template for a quiet nan. (MSB=1)wire [FMSB:0] qNaN = {1'b1,{FMSB{1'b0}}};// variableswire [EMSB+2:0] ex1; // sum of exponents`ifndef GOLDSCHMIDTwire [(FMSB+FADD)*2-1:0] divo;`elsewire [(FMSB+5)*2-1:0] divo;`endif// Operandswire sa, sb; // sign bitwire [EMSB:0] xa, xb; // exponent bitswire [FMSB+1:0] fracta, fractb;wire a_dn, b_dn; // a/b is denormalizedwire az, bz;wire aInf, bInf;wire aNan,bNan;wire done1;wire signed [7:0] lzcnt;// -----------------------------------------------------------// - decode the input operands// - derive basic information// - calculate exponent// - calculate fraction// -----------------------------------------------------------fpDecomp u1a (.i(a), .sgn(sa), .exp(xa), .fract(fracta), .xz(a_dn), .vz(az), .inf(aInf), .nan(aNan) );fpDecomp u1b (.i(b), .sgn(sb), .exp(xb), .fract(fractb), .xz(b_dn), .vz(bz), .inf(bInf), .nan(bNan) );// Compute the exponent.// - correct the exponent for denormalized operands// - adjust the difference by the bias (add 127)// - also factor in the different decimal position for division`ifndef GOLDSCHMIDTassign ex1 = (xa|a_dn) - (xb|b_dn) + bias + FMSB + (FADD-1) - lzcnt - 8'd1;`elseassign ex1 = (xa|a_dn) - (xb|b_dn) + bias + FMSB - lzcnt + 8'd4;`endif// check for exponent underflow/overflowwire under = ex1[EMSB+2]; // MSB set = negative exponentwire over = (&ex1[EMSB:0] | ex1[EMSB+1]) & !ex1[EMSB+2];// Perform divide// Divider width must be a multiple of four`ifndef GOLDSCHMIDTfpdivr16 #(FMSB+FADD) u2 (.clk(clk), .ld(ld), .a({3'b0,fracta,8'b0}), .b({3'b0,fractb,8'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));//fpdivr2 #(FMSB+FADD) u2 (.clk4x(clk4x), .ld(ld), .a({3'b0,fracta,8'b0}), .b({3'b0,fractb,8'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));wire [(FMSB+FADD)*2-1:0] divo1 = divo[(FMSB+FADD)*2-1:0] << (lzcnt-2);`elseDivGoldschmidt #(.WID(FMSB+6),.WHOLE(1),.POINTS(FMSB+5))u2 (.rst(rst), .clk(clk), .ld(ld), .a({fracta,4'b0}), .b({fractb,4'b0}), .q(divo), .done(done1), .lzcnt(lzcnt));wire [(FMSB+6)*2+1:0] divo1 =lzcnt > 8'd5 ? divo << (lzcnt-8'd6) :divo >> (8'd6-lzcnt);;`endifdelay1 #(1) u3 (.clk(clk), .ce(ce), .i(done1), .o(done));// determine when a NaN is outputwire qNaNOut = (az&bz)|(aInf&bInf);always @(posedge clk)// Simulation likes to see these values reset to zero on reset. Otherwise the// values propagate in sim as X's.if (rst) beginxo <= 1'd0;mo <= 1'd0;so <= 1'd0;sign_exe <= 1'd0;overflow <= 1'd0;underflow <= 1'd0;endelse if (ce) beginif (done1) begincasez({qNaNOut|aNan|bNan,bInf,bz,over,under})5'b1????: xo <= infXp; // NaN exponent value5'b01???: xo <= 1'd0; // divide by inf5'b001??: xo <= infXp; // divide by zero5'b0001?: xo <= infXp; // overflow5'b00001: xo <= 1'd0; // underflowdefault: xo <= ex1; // normal or underflow: passthru neg. exp. for normalizationendcasecasez({aNan,bNan,qNaNOut,bInf,bz,over,aInf&bInf,az&bz})8'b1???????: mo <= {1'b1,a[FMSB:0],{FMSB+1{1'b0}}};8'b01??????: mo <= {1'b1,b[FMSB:0],{FMSB+1{1'b0}}};8'b001?????: mo <= {1'b1,qNaN[FMSB:0]|{aInf,1'b0}|{az,bz},{FMSB+1{1'b0}}};8'b0001????: mo <= 1'd0; // div by inf8'b00001???: mo <= 1'd0; // div by zero8'b000001??: mo <= 1'd0; // Inf exponent8'b0000001?: mo <= {1'b1,qNaN|`QINFDIV,{FMSB+1{1'b0}}}; // infinity / infinity8'b00000001: mo <= {1'b1,qNaN|`QZEROZERO,{FMSB+1{1'b0}}}; // zero / zero`ifndef GOLDSCHMIDTdefault: mo <= divo1[(FMSB+FADD)*2-1:(FADD-2)*2-2]; // plain div`elsedefault: mo <= divo1[(FMSB+6)*2+1:2]; // plain div`endifendcaseso <= sa ^ sb;sign_exe <= sa & sb;overflow <= over;underflow <= under;endendendmodulemodule fpDividenr(rst, clk, clk4x, ce, ld, op, a, b, o, rm, done, sign_exe, inf, overflow, underflow);input rst;input clk;input clk4x;input ce;input ld;input op;input [MSB:0] a, b;output [MSB:0] o;input [2:0] rm;output sign_exe;output done;output inf;output overflow;output underflow;wire [EX:0] o1;wire sign_exe1, inf1, overflow1, underflow1;wire [MSB+3:0] fpn0;wire done1;fpDivide #(FPWID) u1 (rst, clk, clk4x, ce, ld, op, a, b, o1, done1, sign_exe1, overflow1, underflow1);fpNormalize #(FPWID) u2(.clk(clk), .ce(ce), .under_i(underflow1), .i(o1), .o(fpn0) );fpRound #(FPWID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );delay2 #(1) u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe));delay2 #(1) u5(.clk(clk), .ce(ce), .i(inf1), .o(inf));delay2 #(1) u6(.clk(clk), .ce(ce), .i(overflow1), .o(overflow));delay2 #(1) u7(.clk(clk), .ce(ce), .i(underflow1), .o(underflow));delay2 #(1) u8(.clk(clk), .ce(ce), .i(done1), .o(done));endmodule
