URL
https://opencores.org/ocsvn/ft816float/ft816float/trunk
Subversion Repositories ft816float
[/] [ft816float/] [trunk/] [rtl/] [verilog2/] [fpDivide.sv] - Rev 49
Compare with Previous | Blame | View Log
// ============================================================================
// __
// \\__/ o\ (C) 2006-2020 Robert Finch, Waterloo
// \ __ / All rights reserved.
// \/_// robfinch<remove>@finitron.ca
// ||
//
// fpDivide.sv
// - floating point divider
// - parameterized width
// - IEEE 754 representation
//
//
// BSD 3-Clause License
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Floating Point Divider
//
//Properties:
//+-inf * +-inf = -+inf (this is handled by exOver)
//+-inf * 0 = QNaN
//+-0 / +-0 = QNaN
// ============================================================================
import fp::*;
//`define GOLDSCHMIDT 1'b1
module fpDivide(rst, clk, clk4x, ce, ld, op, a, b, o, done, sign_exe, overflow, underflow);
// FADD is a constant that makes the divider width a multiple of four and includes eight extra bits.
localparam FADD = FPWID==128 ? 9 :
FPWID==96 ? 9 :
FPWID==84 ? 9 :
FPWID==80 ? 9 :
FPWID==64 ? 13 :
FPWID==52 ? 9 :
FPWID==48 ? 10 :
FPWID==44 ? 9 :
FPWID==42 ? 11 :
FPWID==40 ? 8 :
FPWID==32 ? 10 :
FPWID==24 ? 9 : 11;
input rst;
input clk;
input clk4x;
input ce;
input ld;
input op;
input [MSB:0] a, b;
output [EX:0] o;
output done;
output sign_exe;
output overflow;
output underflow;
// registered outputs
reg sign_exe=0;
reg inf=0;
reg overflow=0;
reg underflow=0;
reg so;
reg [EMSB:0] xo;
reg [FX:0] mo;
assign o = {so,xo,mo};
// constants
wire [EMSB:0] infXp = {EMSB+1{1'b1}}; // infinite / NaN - all ones
// The following is the value for an exponent of zero, with the offset
// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.
wire [EMSB:0] bias = {1'b0,{EMSB{1'b1}}}; //2^0 exponent
// The following is a template for a quiet nan. (MSB=1)
wire [FMSB:0] qNaN = {1'b1,{FMSB{1'b0}}};
// variables
wire [EMSB+2:0] ex1; // sum of exponents
`ifndef GOLDSCHMIDT
wire [(FMSB+FADD)*2-1:0] divo;
`else
wire [(FMSB+5)*2-1:0] divo;
`endif
// Operands
wire sa, sb; // sign bit
wire [EMSB:0] xa, xb; // exponent bits
wire [FMSB+1:0] fracta, fractb;
wire a_dn, b_dn; // a/b is denormalized
wire az, bz;
wire aInf, bInf;
wire aNan,bNan;
wire done1;
wire signed [7:0] lzcnt;
// -----------------------------------------------------------
// - decode the input operands
// - derive basic information
// - calculate exponent
// - calculate fraction
// -----------------------------------------------------------
fpDecomp u1a (.i(a), .sgn(sa), .exp(xa), .fract(fracta), .xz(a_dn), .vz(az), .inf(aInf), .nan(aNan) );
fpDecomp u1b (.i(b), .sgn(sb), .exp(xb), .fract(fractb), .xz(b_dn), .vz(bz), .inf(bInf), .nan(bNan) );
// Compute the exponent.
// - correct the exponent for denormalized operands
// - adjust the difference by the bias (add 127)
// - also factor in the different decimal position for division
`ifndef GOLDSCHMIDT
assign ex1 = (xa|a_dn) - (xb|b_dn) + bias + FMSB + (FADD-1) - lzcnt - 8'd1;
`else
assign ex1 = (xa|a_dn) - (xb|b_dn) + bias + FMSB - lzcnt + 8'd4;
`endif
// check for exponent underflow/overflow
wire under = ex1[EMSB+2]; // MSB set = negative exponent
wire over = (&ex1[EMSB:0] | ex1[EMSB+1]) & !ex1[EMSB+2];
// Perform divide
// Divider width must be a multiple of four
`ifndef GOLDSCHMIDT
fpdivr16 #(FMSB+FADD) u2 (.clk(clk), .ld(ld), .a({3'b0,fracta,8'b0}), .b({3'b0,fractb,8'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));
//fpdivr2 #(FMSB+FADD) u2 (.clk4x(clk4x), .ld(ld), .a({3'b0,fracta,8'b0}), .b({3'b0,fractb,8'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));
wire [(FMSB+FADD)*2-1:0] divo1 = divo[(FMSB+FADD)*2-1:0] << (lzcnt-2);
`else
DivGoldschmidt #(.WID(FMSB+6),.WHOLE(1),.POINTS(FMSB+5))
u2 (.rst(rst), .clk(clk), .ld(ld), .a({fracta,4'b0}), .b({fractb,4'b0}), .q(divo), .done(done1), .lzcnt(lzcnt));
wire [(FMSB+6)*2+1:0] divo1 =
lzcnt > 8'd5 ? divo << (lzcnt-8'd6) :
divo >> (8'd6-lzcnt);
;
`endif
delay1 #(1) u3 (.clk(clk), .ce(ce), .i(done1), .o(done));
// determine when a NaN is output
wire qNaNOut = (az&bz)|(aInf&bInf);
always @(posedge clk)
// Simulation likes to see these values reset to zero on reset. Otherwise the
// values propagate in sim as X's.
if (rst) begin
xo <= 1'd0;
mo <= 1'd0;
so <= 1'd0;
sign_exe <= 1'd0;
overflow <= 1'd0;
underflow <= 1'd0;
end
else if (ce) begin
if (done1) begin
casez({qNaNOut|aNan|bNan,bInf,bz,over,under})
5'b1????: xo <= infXp; // NaN exponent value
5'b01???: xo <= 1'd0; // divide by inf
5'b001??: xo <= infXp; // divide by zero
5'b0001?: xo <= infXp; // overflow
5'b00001: xo <= 1'd0; // underflow
default: xo <= ex1; // normal or underflow: passthru neg. exp. for normalization
endcase
casez({aNan,bNan,qNaNOut,bInf,bz,over,aInf&bInf,az&bz})
8'b1???????: mo <= {1'b1,a[FMSB:0],{FMSB+1{1'b0}}};
8'b01??????: mo <= {1'b1,b[FMSB:0],{FMSB+1{1'b0}}};
8'b001?????: mo <= {1'b1,qNaN[FMSB:0]|{aInf,1'b0}|{az,bz},{FMSB+1{1'b0}}};
8'b0001????: mo <= 1'd0; // div by inf
8'b00001???: mo <= 1'd0; // div by zero
8'b000001??: mo <= 1'd0; // Inf exponent
8'b0000001?: mo <= {1'b1,qNaN|`QINFDIV,{FMSB+1{1'b0}}}; // infinity / infinity
8'b00000001: mo <= {1'b1,qNaN|`QZEROZERO,{FMSB+1{1'b0}}}; // zero / zero
`ifndef GOLDSCHMIDT
default: mo <= divo1[(FMSB+FADD)*2-1:(FADD-2)*2-2]; // plain div
`else
default: mo <= divo1[(FMSB+6)*2+1:2]; // plain div
`endif
endcase
so <= sa ^ sb;
sign_exe <= sa & sb;
overflow <= over;
underflow <= under;
end
end
endmodule
module fpDividenr(rst, clk, clk4x, ce, ld, op, a, b, o, rm, done, sign_exe, inf, overflow, underflow);
input rst;
input clk;
input clk4x;
input ce;
input ld;
input op;
input [MSB:0] a, b;
output [MSB:0] o;
input [2:0] rm;
output sign_exe;
output done;
output inf;
output overflow;
output underflow;
wire [EX:0] o1;
wire sign_exe1, inf1, overflow1, underflow1;
wire [MSB+3:0] fpn0;
wire done1;
fpDivide #(FPWID) u1 (rst, clk, clk4x, ce, ld, op, a, b, o1, done1, sign_exe1, overflow1, underflow1);
fpNormalize #(FPWID) u2(.clk(clk), .ce(ce), .under_i(underflow1), .i(o1), .o(fpn0) );
fpRound #(FPWID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
delay2 #(1) u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe));
delay2 #(1) u5(.clk(clk), .ce(ce), .i(inf1), .o(inf));
delay2 #(1) u6(.clk(clk), .ce(ce), .i(overflow1), .o(overflow));
delay2 #(1) u7(.clk(clk), .ce(ce), .i(underflow1), .o(underflow));
delay2 #(1) u8(.clk(clk), .ce(ce), .i(done1), .o(done));
endmodule