OpenCores
URL https://opencores.org/ocsvn/ft816float/ft816float/trunk

Subversion Repositories ft816float

[/] [ft816float/] [trunk/] [rtl/] [verilog2/] [fpDivide.sv] - Rev 62

Go to most recent revision | Compare with Previous | Blame | View Log

// ============================================================================
//        __
//   \\__/ o\    (C) 2006-2020  Robert Finch, Waterloo
//    \  __ /    All rights reserved.
//     \/_//     robfinch<remove>@finitron.ca
//       ||
//
//      fpDivide.sv
//    - floating point divider
//    - parameterized width
//    - IEEE 754 representation
//
//
// BSD 3-Clause License
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
//    list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
//    this list of conditions and the following disclaimer in the documentation
//    and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
//    contributors may be used to endorse or promote products derived from
//    this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//      Floating Point Divider
//
//Properties:
//+-inf * +-inf = -+inf    (this is handled by exOver)
//+-inf * 0     = QNaN
//+-0 / +-0      = QNaN
// ============================================================================

import fp::*;
//`define GOLDSCHMIDT   1'b1

module fpDivide(rst, clk, clk4x, ce, ld, op, a, b, o, done, sign_exe, overflow, underflow);
// FADD is a constant that makes the divider width a multiple of four and includes eight extra bits.                    
localparam FADD = FPWID==128 ? 9 :
                                  FPWID==96 ? 9 :
                                  FPWID==84 ? 9 :
                                  FPWID==80 ? 9 :
                                  FPWID==64 ? 13 :
                                  FPWID==52 ? 9 :
                                  FPWID==48 ? 10 :
                                  FPWID==44 ? 9 :
                                  FPWID==42 ? 11 :
                                  FPWID==40 ? 8 :
                                  FPWID==32 ? 10 :
                                  FPWID==24 ? 9 : 11;
input rst;
input clk;
input clk4x;
input ce;
input ld;
input op;
input [MSB:0] a, b;
output [EX:0] o;
output done;
output sign_exe;
output overflow;
output underflow;

// registered outputs
reg sign_exe=0;
reg inf=0;
reg     overflow=0;
reg     underflow=0;

reg so;
reg [EMSB:0] xo;
reg [FX:0] mo;
assign o = {so,xo,mo};

// constants
wire [EMSB:0] infXp = {EMSB+1{1'b1}};   // infinite / NaN - all ones
// The following is the value for an exponent of zero, with the offset
// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.
wire [EMSB:0] bias = {1'b0,{EMSB{1'b1}}};       //2^0 exponent
// The following is a template for a quiet nan. (MSB=1)
wire [FMSB:0] qNaN  = {1'b1,{FMSB{1'b0}}};

// variables
wire [EMSB+2:0] ex1;    // sum of exponents
`ifndef GOLDSCHMIDT
wire [(FMSB+FADD)*2-1:0] divo;
`else
wire [(FMSB+5)*2-1:0] divo;
`endif

// Operands
wire sa, sb;                    // sign bit
wire [EMSB:0] xa, xb;   // exponent bits
wire [FMSB+1:0] fracta, fractb;
wire a_dn, b_dn;                        // a/b is denormalized
wire az, bz;
wire aInf, bInf;
wire aNan,bNan;
wire done1;
wire signed [7:0] lzcnt;

// -----------------------------------------------------------
// - decode the input operands
// - derive basic information
// - calculate exponent
// - calculate fraction
// -----------------------------------------------------------

fpDecomp u1a (.i(a), .sgn(sa), .exp(xa), .fract(fracta), .xz(a_dn), .vz(az), .inf(aInf), .nan(aNan) );
fpDecomp u1b (.i(b), .sgn(sb), .exp(xb), .fract(fractb), .xz(b_dn), .vz(bz), .inf(bInf), .nan(bNan) );

// Compute the exponent.
// - correct the exponent for denormalized operands
// - adjust the difference by the bias (add 127)
// - also factor in the different decimal position for division
`ifndef GOLDSCHMIDT
assign ex1 = (xa|a_dn) - (xb|b_dn) + bias + FMSB + (FADD-1) - lzcnt - 8'd1;
`else
assign ex1 = (xa|a_dn) - (xb|b_dn) + bias + FMSB - lzcnt + 8'd4;
`endif

// check for exponent underflow/overflow
wire under = ex1[EMSB+2];       // MSB set = negative exponent
wire over = (&ex1[EMSB:0] | ex1[EMSB+1]) & !ex1[EMSB+2];

// Perform divide
// Divider width must be a multiple of four
`ifndef GOLDSCHMIDT
fpdivr16 #(FMSB+FADD) u2 (.clk(clk), .ld(ld), .a({3'b0,fracta,8'b0}), .b({3'b0,fractb,8'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));
//fpdivr2 #(FMSB+FADD) u2 (.clk4x(clk4x), .ld(ld), .a({3'b0,fracta,8'b0}), .b({3'b0,fractb,8'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));
wire [(FMSB+FADD)*2-1:0] divo1 = divo[(FMSB+FADD)*2-1:0] << (lzcnt-2);
`else
DivGoldschmidt #(.WID(FMSB+6),.WHOLE(1),.POINTS(FMSB+5))
        u2 (.rst(rst), .clk(clk), .ld(ld), .a({fracta,4'b0}), .b({fractb,4'b0}), .q(divo), .done(done1), .lzcnt(lzcnt));
wire [(FMSB+6)*2+1:0] divo1 =
        lzcnt > 8'd5 ? divo << (lzcnt-8'd6) :
        divo >> (8'd6-lzcnt);
        ;
`endif
delay1 #(1) u3 (.clk(clk), .ce(ce), .i(done1), .o(done));


// determine when a NaN is output
wire qNaNOut = (az&bz)|(aInf&bInf);

always @(posedge clk)
// Simulation likes to see these values reset to zero on reset. Otherwise the
// values propagate in sim as X's.
if (rst) begin
        xo <= 1'd0;
        mo <= 1'd0;
        so <= 1'd0;
        sign_exe <= 1'd0;
        overflow <= 1'd0;
        underflow <= 1'd0;
end
else if (ce) begin
                if (done1) begin
                        casez({qNaNOut|aNan|bNan,bInf,bz,over,under})
                        5'b1????:               xo <= infXp;    // NaN exponent value
                        5'b01???:               xo <= 1'd0;             // divide by inf
                        5'b001??:               xo <= infXp;    // divide by zero
                        5'b0001?:               xo <= infXp;    // overflow
                        5'b00001:               xo <= 1'd0;             // underflow
                        default:                xo <= ex1;      // normal or underflow: passthru neg. exp. for normalization
                        endcase

                        casez({aNan,bNan,qNaNOut,bInf,bz,over,aInf&bInf,az&bz})
                        8'b1???????:    mo <= {1'b1,a[FMSB:0],{FMSB+1{1'b0}}};
                        8'b01??????:    mo <= {1'b1,b[FMSB:0],{FMSB+1{1'b0}}};
                        8'b001?????:    mo <= {1'b1,qNaN[FMSB:0]|{aInf,1'b0}|{az,bz},{FMSB+1{1'b0}}};
                        8'b0001????:    mo <= 1'd0;     // div by inf
                        8'b00001???:    mo <= 1'd0;     // div by zero
                        8'b000001??:    mo <= 1'd0;     // Inf exponent
                        8'b0000001?:    mo <= {1'b1,qNaN|`QINFDIV,{FMSB+1{1'b0}}};      // infinity / infinity
                        8'b00000001:    mo <= {1'b1,qNaN|`QZEROZERO,{FMSB+1{1'b0}}};    // zero / zero
`ifndef GOLDSCHMIDT
                        default:                mo <= divo1[(FMSB+FADD)*2-1:(FADD-2)*2-2];      // plain div
`else
                        default:                mo <= divo1[(FMSB+6)*2+1:2];    // plain div
`endif
                        endcase

                        so              <= sa ^ sb;
                        sign_exe        <= sa & sb;
                        overflow        <= over;
                        underflow       <= under;
                end
        end

endmodule

module fpDividenr(rst, clk, clk4x, ce, ld, op, a, b, o, rm, done, sign_exe, inf, overflow, underflow);
input rst;
input clk;
input clk4x;
input ce;
input ld;
input op;
input  [MSB:0] a, b;
output [MSB:0] o;
input [2:0] rm;
output sign_exe;
output done;
output inf;
output overflow;
output underflow;

wire [EX:0] o1;
wire sign_exe1, inf1, overflow1, underflow1;
wire [MSB+3:0] fpn0;
wire done1;

fpDivide    #(FPWID) u1 (rst, clk, clk4x, ce, ld, op, a, b, o1, done1, sign_exe1, overflow1, underflow1);
fpNormalize #(FPWID) u2(.clk(clk), .ce(ce), .under_i(underflow1), .i(o1), .o(fpn0) );
fpRound     #(FPWID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
delay2      #(1)   u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe));
delay2      #(1)   u5(.clk(clk), .ce(ce), .i(inf1), .o(inf));
delay2      #(1)   u6(.clk(clk), .ce(ce), .i(overflow1), .o(overflow));
delay2      #(1)   u7(.clk(clk), .ce(ce), .i(underflow1), .o(underflow));
delay2            #(1)   u8(.clk(clk), .ce(ce), .i(done1), .o(done));
endmodule

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.