URL
https://opencores.org/ocsvn/ft816float/ft816float/trunk
Subversion Repositories ft816float
[/] [ft816float/] [trunk/] [rtl/] [verilog2/] [fpFMA.sv] - Rev 58
Compare with Previous | Blame | View Log
// ============================================================================// __// \\__/ o\ (C) 2019-2021 Robert Finch, Waterloo// \ __ / All rights reserved.// \/_// robfinch<remove>@finitron.ca// ||//// fpFMA.sv// - floating point fused multiplier + adder// - can issue every clock cycle// - parameterized FPWIDth// - IEEE 754 representation////// BSD 3-Clause License// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// 1. Redistributions of source code must retain the above copyright notice, this// list of conditions and the following disclaimer.//// 2. Redistributions in binary form must reproduce the above copyright notice,// this list of conditions and the following disclaimer in the documentation// and/or other materials provided with the distribution.//// 3. Neither the name of the copyright holder nor the names of its// contributors may be used to endorse or promote products derived from// this software without specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.//// ============================================================================import fp::*;module fpFMA (clk, ce, op, rm, a, b, c, o, under, over, inf, zero);input clk;input ce;input op; // operation 0 = add, 1 = subtractinput [2:0] rm;input [MSB:0] a, b, c;output [EX:0] o;output under;output over;output inf;output zero;// constantswire [EMSB:0] infXp = {EMSB+1{1'b1}}; // infinite / NaN - all ones// The following is the value for an exponent of zero, with the offset// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.wire [EMSB:0] bias = {1'b0,{EMSB{1'b1}}}; //2^0 exponent// The following is a template for a quiet nan. (MSB=1)wire [FMSB:0] qNaN = {1'b1,{FMSB{1'b0}}};// -----------------------------------------------------------// Clock #1// - decode the input operands// - derive basic information// -----------------------------------------------------------wire sa1, sb1, sc1; // sign bitwire [EMSB:0] xa1, xb1, xc1; // exponent bitswire [FMSB+1:0] fracta1, fractb1, fractc1; // includes unhidden bitwire a_dn1, b_dn1, c_dn1; // a/b is denormalizedwire aNan1, bNan1, cNan1;wire az1, bz1, cz1;wire aInf1, bInf1, cInf1;reg op1;fpDecompReg u1a (.clk(clk), .ce(ce), .i(a), .sgn(sa1), .exp(xa1), .fract(fracta1), .xz(a_dn1), .vz(az1), .inf(aInf1), .nan(aNan1) );fpDecompReg u1b (.clk(clk), .ce(ce), .i(b), .sgn(sb1), .exp(xb1), .fract(fractb1), .xz(b_dn1), .vz(bz1), .inf(bInf1), .nan(bNan1) );fpDecompReg u1c (.clk(clk), .ce(ce), .i(c), .sgn(sc1), .exp(xc1), .fract(fractc1), .xz(c_dn1), .vz(cz1), .inf(cInf1), .nan(cNan1) );always @(posedge clk)if (ce) op1 <= op;// -----------------------------------------------------------// Clock #2// Compute the sum of the exponents.// correct the exponent for denormalized operands// adjust the sum by the exponent offset (subtract 127)// mul: ex1 = xa + xb, result should always be < 1ffh// Form partial products (clocks 2 to 5)// -----------------------------------------------------------reg abz2;reg [EMSB+2:0] ex2;reg [EMSB:0] xc2;reg realOp2;reg xcInf2;always @(posedge clk)if (ce) abz2 <= az1|bz1;always @(posedge clk)if (ce) ex2 <= (xa1|a_dn1) + (xb1|b_dn1) - bias;always @(posedge clk)if (ce) xc2 <= (xc1|c_dn1);always @(posedge clk)if (ce) xcInf2 = &xc1;// Figure out which operation is really needed an add or// subtract ?// If the signs are the same, use the orignal op,// otherwise flip the operation// a + b = add,+// a + -b = sub, so of larger// -a + b = sub, so of larger// -a + -b = add,-// a - b = sub, so of larger// a - -b = add,+// -a - b = add,-// -a - -b = sub, so of largeralways @(posedge clk)if (ce) realOp2 <= op1 ^ (sa1 ^ sb1) ^ sc1;reg [FX:0] fract5;generateif (FPWID==84) beginreg [33:0] p00,p01,p02,p03;reg [33:0] p10,p11,p12,p13;reg [33:0] p20,p21,p22,p23;reg [33:0] p30,p31,p32,p33;reg [135:0] fract3a;reg [135:0] fract3b;reg [135:0] fract3c;reg [135:0] fract3d;reg [135:0] fract4a;reg [135:0] fract4b;always @(posedge clk)if (ce) beginp00 <= fracta1[16: 0] * fractb1[16: 0];p01 <= fracta1[33:17] * fractb1[16: 0];p02 <= fracta1[50:34] * fractb1[16: 0];p03 <= fracta1[67:51] * fractb1[16: 0];p10 <= fracta1[16: 0] * fractb1[33:17];p11 <= fracta1[33:17] * fractb1[33:17];p12 <= fracta1[50:34] * fractb1[33:17];p13 <= fracta1[67:51] * fractb1[33:17];p20 <= fracta1[16: 0] * fractb1[50:34];p21 <= fracta1[33:17] * fractb1[50:34];p22 <= fracta1[50:34] * fractb1[50:34];p23 <= fracta1[67:51] * fractb1[50:34];p30 <= fracta1[15: 0] * fractb1[67:51];p31 <= fracta1[31:16] * fractb1[67:51];p32 <= fracta1[47:32] * fractb1[67:51];p33 <= fracta1[63:48] * fractb1[67:51];endalways @(posedge clk)if (ce) beginfract3a <= {p33,p31,p20,p00};fract3b <= {p32,p12,p10,17'b0} + {p23,p03,p01,17'b0};fract3c <= {p22,p11,34'b0} + {p13,p02,34'b0};fract3d <= {p12,51'b0} + {p03,51'b0};endalways @(posedge clk)if (ce) beginfract4a <= fract3a + fract3b;fract4b <= fract3c + fract3d;endalways @(posedge clk)if (ce) beginfract5 <= fract4a + fract4b;endendelse if (FPWID==80) beginreg [31:0] p00,p01,p02,p03;reg [31:0] p10,p11,p12,p13;reg [31:0] p20,p21,p22,p23;reg [31:0] p30,p31,p32,p33;reg [127:0] fract3a;reg [127:0] fract3b;reg [127:0] fract3c;reg [127:0] fract3d;reg [127:0] fract4a;reg [127:0] fract4b;always @(posedge clk)if (ce) beginp00 <= fracta1[15: 0] * fractb1[15: 0];p01 <= fracta1[31:16] * fractb1[15: 0];p02 <= fracta1[47:32] * fractb1[15: 0];p03 <= fracta1[63:48] * fractb1[15: 0];p10 <= fracta1[15: 0] * fractb1[31:16];p11 <= fracta1[31:16] * fractb1[31:16];p12 <= fracta1[47:32] * fractb1[31:16];p13 <= fracta1[63:48] * fractb1[31:16];p20 <= fracta1[15: 0] * fractb1[47:32];p21 <= fracta1[31:16] * fractb1[47:32];p22 <= fracta1[47:32] * fractb1[47:32];p23 <= fracta1[63:48] * fractb1[47:32];p30 <= fracta1[15: 0] * fractb1[63:48];p31 <= fracta1[31:16] * fractb1[63:48];p32 <= fracta1[47:32] * fractb1[63:48];p33 <= fracta1[63:48] * fractb1[63:48];endalways @(posedge clk)if (ce) beginfract3a <= {p33,p31,p20,p00};fract3b <= {p32,p12,p10,16'b0} + {p23,p03,p01,16'b0};fract3c <= {p22,p11,32'b0} + {p13,p02,32'b0};fract3d <= {p12,48'b0} + {p03,48'b0};endalways @(posedge clk)if (ce) beginfract4a <= fract3a + fract3b;fract4b <= fract3c + fract3d;endalways @(posedge clk)if (ce) beginfract5 <= fract4a + fract4b;endendelse if (FPWID==64) beginreg [35:0] p00,p01,p02;reg [35:0] p10,p11,p12;reg [35:0] p20,p21,p22;reg [71:0] fract3a;reg [89:0] fract3b;reg [107:0] fract3c;reg [108:0] fract4a;reg [108:0] fract4b;always @(posedge clk)if (ce) beginp00 <= fracta1[17: 0] * fractb1[17: 0];p01 <= fracta1[35:18] * fractb1[17: 0];p02 <= fracta1[52:36] * fractb1[17: 0];p10 <= fracta1[17: 0] * fractb1[35:18];p11 <= fracta1[35:18] * fractb1[35:18];p12 <= fracta1[52:36] * fractb1[35:18];p20 <= fracta1[17: 0] * fractb1[52:36];p21 <= fracta1[35:18] * fractb1[52:36];p22 <= fracta1[52:36] * fractb1[52:36];endalways @(posedge clk)if (ce) beginfract3a <= {p02,p00};fract3b <= {p21,p10,18'b0} + {p12,p01,18'b0};fract3c <= {p22,p20,36'b0} + {p11,36'b0};endalways @(posedge clk)if (ce) beginfract4a <= fract3a + fract3b;fract4b <= fract3c;endalways @(posedge clk)if (ce) beginfract5 <= fract4a + fract4b;endendelse if (FPWID==40) beginreg [27:0] p00,p01,p02;reg [27:0] p10,p11,p12;reg [27:0] p20,p21,p22;reg [79:0] fract3a;reg [79:0] fract3b;reg [79:0] fract3c;reg [79:0] fract4a;reg [79:0] fract4b;always @(posedge clk)if (ce) beginp00 <= fracta1[13: 0] * fractb1[13: 0];p01 <= fracta1[27:14] * fractb1[13: 0];p02 <= fracta1[39:28] * fractb1[13: 0];p10 <= fracta1[13: 0] * fractb1[27:14];p11 <= fracta1[27:14] * fractb1[27:14];p12 <= fracta1[39:28] * fractb1[27:14];p20 <= fracta1[13: 0] * fractb1[39:28];p21 <= fracta1[27:14] * fractb1[39:28];p22 <= fracta1[39:28] * fractb1[39:28];endalways @(posedge clk)if (ce) beginfract3a <= {p02,p00};fract3b <= {p21,p10,18'b0} + {p12,p01,18'b0};fract3c <= {p22,p20,36'b0} + {p11,36'b0};endalways @(posedge clk)if (ce) beginfract4a <= fract3a + fract3b;fract4b <= fract3c;endalways @(posedge clk)if (ce) beginfract5 <= fract4a + fract4b;endendelse if (FPWID==32) beginreg [23:0] p00,p01,p02;reg [23:0] p10,p11,p12;reg [23:0] p20,p21,p22;reg [63:0] fract3a;reg [63:0] fract3b;reg [63:0] fract4;always @(posedge clk)if (ce) beginp00 <= fracta1[11: 0] * fractb1[11: 0];p01 <= fracta1[23:12] * fractb1[11: 0];p10 <= fracta1[11: 0] * fractb1[23:12];p11 <= fracta1[23:12] * fractb1[23:12];endalways @(posedge clk)if (ce) beginfract3a <= {p11,p00};fract3b <= {p01,12'b0} + {p10,12'b0};endalways @(posedge clk)if (ce) beginfract4 <= fract3a + fract3b;endalways @(posedge clk)if (ce) beginfract5 <= fract4;endendelse beginreg [FX:0] p00;reg [FX:0] fract3;reg [FX:0] fract4;always @(posedge clk)if (ce) beginp00 <= fracta1 * fractb1;endalways @(posedge clk)if (ce)fract3 <= p00;always @(posedge clk)if (ce)fract4 <= fract3;always @(posedge clk)if (ce)fract5 <= fract4;endendgenerate// -----------------------------------------------------------// Clock #3// Select zero exponent// -----------------------------------------------------------reg [EMSB+2:0] ex3;reg [EMSB:0] xc3;always @(posedge clk)if (ce) ex3 <= abz2 ? 1'd0 : ex2;always @(posedge clk)if (ce) xc3 <= xc2;// -----------------------------------------------------------// Clock #4// Generate partial products.// -----------------------------------------------------------reg [EMSB+2:0] ex4;reg [EMSB:0] xc4;always @(posedge clk)if (ce) ex4 <= ex3;always @(posedge clk)if (ce) xc4 <= xc3;// -----------------------------------------------------------// Clock #5// Sum partial products (above)// compute multiplier overflow and underflow// -----------------------------------------------------------// Statusreg under5;reg over5;reg [EMSB+2:0] ex5;reg [EMSB:0] xc5;wire aInf5, bInf5;wire aNan5, bNan5;wire qNaNOut5;always @(posedge clk)if (ce) under5 <= ex4[EMSB+2];always @(posedge clk)if (ce) over5 <= (&ex4[EMSB:0] | ex4[EMSB+1]) & !ex4[EMSB+2];always @(posedge clk)if (ce) ex5 <= ex4;always @(posedge clk)if (ce) xc5 <= xc4;delay4 u2a (.clk(clk), .ce(ce), .i(aInf1), .o(aInf5) );delay4 u2b (.clk(clk), .ce(ce), .i(bInf1), .o(bInf5) );// determine when a NaN is outputwire [MSB:0] a5,b5;delay4 u5 (.clk(clk), .ce(ce), .i((aInf1&bz1)|(bInf1&az1)), .o(qNaNOut5) );delay4 u14 (.clk(clk), .ce(ce), .i(aNan1), .o(aNan5) );delay4 u15 (.clk(clk), .ce(ce), .i(bNan1), .o(bNan5) );delay5 #(MSB+1) u16 (.clk(clk), .ce(ce), .i(a), .o(a5) );delay5 #(MSB+1) u17 (.clk(clk), .ce(ce), .i(b), .o(b5) );// -----------------------------------------------------------// Clock #6// - figure multiplier mantissa output// - figure multiplier exponent output// - correct xponent and mantissa for exceptional conditions// -----------------------------------------------------------reg [FX:0] mo6;reg [EMSB+2:0] ex6;reg [EMSB:0] xc6;wire [FMSB+1:0] fractc6;vtdl #(FMSB+2) u61 (.clk(clk), .ce(ce), .a(4'd4), .d(fractc1), .q(fractc6) );delay1 u62 (.clk(clk), .ce(ce), .i(under5), .o(under6));always @(posedge clk)if (ce) xc6 <= xc5;always @(posedge clk)if (ce)casez({aNan5,bNan5,qNaNOut5,aInf5,bInf5,over5})6'b1?????: mo6 <= {1'b1,1'b1,a5[FMSB-1:0],{FMSB+1{1'b0}}};6'b01????: mo6 <= {1'b1,1'b1,b5[FMSB-1:0],{FMSB+1{1'b0}}};6'b001???: mo6 <= {1'b1,qNaN|3'd4,{FMSB+1{1'b0}}}; // multiply inf * zero6'b0001??: mo6 <= 0; // mul inf's6'b00001?: mo6 <= 0; // mul inf's6'b000001: mo6 <= 0; // mul overflowdefault: mo6 <= fract5;endcasealways @(posedge clk)if (ce)casez({qNaNOut5|aNan5|bNan5,aInf5,bInf5,over5,under5})5'b1????: ex6 <= infXp; // qNaN - infinity * zero5'b01???: ex6 <= infXp; // 'a' infinite5'b001??: ex6 <= infXp; // 'b' infinite5'b0001?: ex6 <= infXp; // result overflow5'b00001: ex6 <= ex5; //0; // underflowdefault: ex6 <= ex5; // situation normalendcase// -----------------------------------------------------------// Clock #7// - prep for addition, determine greater operand// -----------------------------------------------------------reg ex_gt_xc7;reg xeq7;reg ma_gt_mc7;reg meq7;wire az7, bz7, cz7;wire realOp7;// which has greater magnitude ? Used for sign calcalways @(posedge clk)if (ce) ex_gt_xc7 <= $signed(ex6) > $signed({2'b0,xc6});always @(posedge clk)if (ce) xeq7 <= (ex6=={2'b0,xc6});always @(posedge clk)if (ce) ma_gt_mc7 <= mo6 > {fractc6,{FMSB+1{1'b0}}};always @(posedge clk)if (ce) meq7 <= mo6 == {fractc6,{FMSB+1{1'b0}}};vtdl #(1) u71 (.clk(clk), .ce(ce), .a(4'd5), .d(az1), .q(az7));vtdl #(1) u72 (.clk(clk), .ce(ce), .a(4'd5), .d(bz1), .q(bz7));vtdl #(1) u73 (.clk(clk), .ce(ce), .a(4'd5), .d(cz1), .q(cz7));vtdl #(1) u74 (.clk(clk), .ce(ce), .a(4'd4), .d(realOp2), .q(realOp7));// -----------------------------------------------------------// Clock #8// - prep for addition, determine greater operand// - determine if result will be zero// -----------------------------------------------------------reg a_gt_b8;reg resZero8;reg ex_gt_xc8;wire [EMSB+2:0] ex8;wire [EMSB:0] xc8;wire xcInf8;wire [2:0] rm8;wire op8;wire sa8, sc8;delay2 #(EMSB+3) u81 (.clk(clk), .ce(ce), .i(ex6), .o(ex8));delay2 #(EMSB+1) u82 (.clk(clk), .ce(ce), .i(xc6), .o(xc8));vtdl #(1) u83 (.clk(clk), .ce(ce), .a(4'd5), .d(xcInf2), .q(xcInf8));vtdl #(3) u84 (.clk(clk), .ce(ce), .a(4'd7), .d(rm), .q(rm8));vtdl #(1) u85 (.clk(clk), .ce(ce), .a(4'd6), .d(op1), .q(op8));vtdl #(1) u86 (.clk(clk), .ce(ce), .a(4'd6), .d(sa1 ^ sb1), .q(sa8));vtdl #(1) u87 (.clk(clk), .ce(ce), .a(4'd6), .d(sc1), .q(sc8));always @(posedge clk)if (ce) ex_gt_xc8 <= ex_gt_xc7;always @(posedge clk)if (ce)a_gt_b8 <= ex_gt_xc7 || (xeq7 && ma_gt_mc7);// Find out if the result will be zero.always @(posedge clk)if (ce)resZero8 <= (realOp7 & xeq7 & meq7) || // subtract, same magnitude((az7 | bz7) & cz7); // a or b zero and c zero// -----------------------------------------------------------// CLock #9// Compute output exponent and sign//// The output exponent is the larger of the two exponents,// unless a subtract operation is in progress and the two// numbers are equal, in which case the exponent should be// zero.// -----------------------------------------------------------reg so9;reg [EMSB+2:0] ex9;reg [EMSB+2:0] ex9a;reg ex_gt_xc9;reg [EMSB:0] xc9;reg a_gt_c9;wire [FX:0] mo9;wire [FMSB+1:0] fractc9;wire under9;wire xeq9;always @(posedge clk)if (ce) ex_gt_xc9 <= ex_gt_xc8;always @(posedge clk)if (ce) a_gt_c9 <= a_gt_b8;always @(posedge clk)if (ce) xc9 <= xc8;always @(posedge clk)if (ce) ex9a <= ex8;delay3 #(FX+1) u93 (.clk(clk), .ce(ce), .i(mo6), .o(mo9));delay3 #(FMSB+2) u94 (.clk(clk), .ce(ce), .i(fractc6), .o(fractc9));delay3 u95 (.clk(clk), .ce(ce), .i(under6), .o(under9));delay2 u96 (.clk(clk), .ce(ce), .i(xeq7), .o(xeq9));always @(posedge clk)if (ce) ex9 <= resZero8 ? 1'd0 : ex_gt_xc8 ? ex8 : {2'b0,xc8};// Compute output signalways @(posedge clk)if (ce)case ({resZero8,sa8,op8,sc8}) // synopsys full_case parallel_case4'b0000: so9 <= 0; // + + + = +4'b0001: so9 <= !a_gt_b8; // + + - = sign of larger4'b0010: so9 <= !a_gt_b8; // + - + = sign of larger4'b0011: so9 <= 0; // + - - = +4'b0100: so9 <= a_gt_b8; // - + + = sign of larger4'b0101: so9 <= 1; // - + - = -4'b0110: so9 <= 1; // - - + = -4'b0111: so9 <= a_gt_b8; // - - - = sign of larger4'b1000: so9 <= 0; // A + B, sign = +4'b1001: so9 <= rm8==3; // A + -B, sign = + unless rounding down4'b1010: so9 <= rm8==3; // A - B, sign = + unless rounding down4'b1011: so9 <= 0; // +A - -B, sign = +4'b1100: so9 <= rm8==3; // -A + B, sign = + unless rounding down4'b1101: so9 <= 1; // -A + -B, sign = -4'b1110: so9 <= 1; // -A - +B, sign = -4'b1111: so9 <= rm8==3; // -A - -B, sign = + unless rounding downendcase// -----------------------------------------------------------// Clock #10// Compute the difference in exponents, provides shift amount// Note that ex9a will be negative for an underflow condition// so it's added rather than subtracted from xc9 as -(-num)// is the same as an add. The underflow is tracked rather than// using extra bits in the exponent.// -----------------------------------------------------------reg [EMSB+2:0] xdiff10;reg [FX:0] mfs;reg ops10;// If the multiplier exponent was negative (underflowed) then// the mantissa needs to be shifted right even more (until// the exponent is zero. The total shift would be xc9-0-// amount underflows which is xc9 + -ex9a.always @(posedge clk)if (ce) xdiff10 <= ex_gt_xc9 ? ex9a - xc9: ex9a[EMSB+2] ? xc9 + (~ex9a+2'd1): xc9 - ex9a;// Determine which fraction to denormalize (the one with the// smaller exponent is denormalized). If the exponents are equal// denormalize the smaller fraction.always @(posedge clk)if (ce) mfs <=xeq9 ? (a_gt_c9 ? {4'b0,fractc9,{FMSB+1{1'b0}}} : mo9): ex_gt_xc9 ? {4'b0,fractc9,{FMSB+1{1'b0}}} : mo9;always @(posedge clk)if (ce) ops10 <= xeq9 ? (a_gt_c9 ? 1'b1 : 1'b0): (ex_gt_xc9 ? 1'b1 : 1'b0);// -----------------------------------------------------------// Clock #11// Limit the size of the shifter to only bits needed.// -----------------------------------------------------------reg [7:0] xdif11;always @(posedge clk)if (ce) xdif11 <= xdiff10 > FX+3 ? FX+3 : xdiff10;// -----------------------------------------------------------// Clock #12// Determine the sticky bit// -----------------------------------------------------------wire sticky, sticky12;wire [FX:0] mfs12;wire [7:0] xdif12;redorN #(.BSIZE(FX+1)) uredor1 (.a({1'b0,xdif11+FMSB}), .b(mfs), .o(sticky));/*generatebeginif (FPWID==128)redor128 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) );else if (FPWID==96)redor96 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) );else if (FPWID==84)redor84 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) );else if (FPWID==80)redor80 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) );else if (FPWID==64)redor64 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) );else if (FPWID==32)redor32 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) );else beginalways @* begin$display("redor operation needed in fpFMA");$finish;endendendendgenerate*/// register inputs to shifter and shiftdelay1 #(1) u122(.clk(clk), .ce(ce), .i(sticky), .o(sticky12) );delay1 #(8) u123(.clk(clk), .ce(ce), .i(xdif11), .o(xdif12) );delay2 #(FX+1) u124(.clk(clk), .ce(ce), .i(mfs), .o(mfs12) );// -----------------------------------------------------------// Clock #13// - denormalize operand (shift right)// -----------------------------------------------------------reg [FX+2:0] mfs13;wire [FX:0] mo13;wire ex_gt_xc13;wire [FMSB+1:0] fractc13;wire ops13;delay4 #(FX+1) u131 (.clk(clk), .ce(ce), .i(mo9), .o(mo13));delay4 u132 (.clk(clk), .ce(ce), .i(ex_gt_xc9), .o(ex_gt_xc13));vtdl #(FMSB+2) u133 (.clk(clk), .ce(ce), .a(4'd3), .d(fractc9), .q(fractc13));delay3 u134 (.clk(clk), .ce(ce), .i(ops10), .o(ops13));always @(posedge clk)if (ce) mfs13 <= ({mfs12,2'b0} >> xdif12)|sticky12;// -----------------------------------------------------------// Clock #14// Sort operands// -----------------------------------------------------------reg [FX+2:0] oa, ob;wire a_gt_b14;vtdl #(1) u141 (.clk(clk), .ce(ce), .a(4'd5), .d(a_gt_b8), .q(a_gt_b14));always @(posedge clk)if (ce) oa <= ops13 ? {mo13,2'b00} : mfs13;always @(posedge clk)if (ce) ob <= ops13 ? mfs13 : {fractc13,{FMSB+1{1'b0}},2'b00};// -----------------------------------------------------------// Clock #15// - Sort operands// -----------------------------------------------------------reg [FX+2:0] oaa, obb;wire realOp15;wire [EMSB:0] ex15;wire [EMSB:0] ex9c = ex9[EMSB+1] ? infXp : ex9[EMSB:0];wire overflow15;vtdl #(1) u151 (.clk(clk), .ce(ce), .a(4'd7), .d(realOp7), .q(realOp15));vtdl #(EMSB+1) u152 (.clk(clk), .ce(ce), .a(4'd5), .d(ex9c), .q(ex15));vtdl #(EMSB+1) u153 (.clk(clk), .ce(ce), .a(4'd5), .d(ex9[EMSB+1]| &ex9[EMSB:0]), .q(overflow15));always @(posedge clk)if (ce) oaa <= a_gt_b14 ? oa : ob;always @(posedge clk)if (ce) obb <= a_gt_b14 ? ob : oa;// -----------------------------------------------------------// Clock #16// - perform add/subtract// - addition can generate an extra bit, subtract can't go negative// -----------------------------------------------------------reg [FX+3:0] mab;wire [FX:0] mo16;wire [FMSB+1:0] fractc16;wire Nan16;wire cNan16;wire aInf16, cInf16;wire op16;wire exinf16;vtdl #(1) u161 (.clk(clk), .ce(ce), .a(4'd10), .d(qNaNOut5|aNan5|bNan5), .q(Nan16));vtdl #(1) u162 (.clk(clk), .ce(ce), .a(4'd14), .d(cNan1), .q(cNan16));vtdl #(1) u163 (.clk(clk), .ce(ce), .a(4'd9), .d(&ex6), .q(aInf16));vtdl #(1) u164 (.clk(clk), .ce(ce), .a(4'd14), .d(cInf1), .q(cInf16));vtdl #(1) u165 (.clk(clk), .ce(ce), .a(4'd14), .d(op1), .q(op16));delay3 #(FX+1) u166 (.clk(clk), .ce(ce), .i(mo13), .o(mo16));vtdl #(FMSB+2) u167 (.clk(clk), .ce(ce), .a(4'd6), .d(fractc9), .q(fractc16));delay1 u169 (.clk(clk), .ce(ce), .i(&ex15), .o(exinf16));always @(posedge clk)if (ce) mab <= realOp15 ? oaa - obb : oaa + obb;// -----------------------------------------------------------// Clock #17// - adjust for Nans// -----------------------------------------------------------wire [EMSB:0] ex17;reg [FX:0] mo17;wire so17;wire exinf17;wire overflow17;vtdl #(1) u171 (.clk(clk), .ce(ce), .a(4'd7), .d(so9), .q(so17));delay2 #(EMSB+1) u172 (.clk(clk), .ce(ce), .i(ex15), .o(ex17));delay1 #(1) u173 (.clk(clk), .ce(ce), .i(exinf16), .o(exinf17));delay2 u174 (.clk(clk), .ce(ce), .i(overflow15), .o(overflow17));always @(posedge clk)casez({aInf16&cInf16,Nan16,cNan16,exinf16})4'b1???: mo17 <= {1'b0,op16,{FMSB-1{1'b0}},op16,{FMSB{1'b0}}}; // inf +/- inf - generate QNaN on subtract, inf on add4'b01??: mo17 <= {1'b0,mo16};4'b001?: mo17 <= {1'b1,1'b1,fractc16[FMSB-1:0],{FMSB+1{1'b0}}};4'b0001: mo17 <= 1'd0;default: mo17 <= mab[FX+3:2]; // mab has two extra lead bits and two trailing bitsendcaseassign o = {so17,ex17,mo17};assign zero = {ex17,mo17}==1'd0;assign inf = exinf17;assign under = ex17==1'd0;assign over = overflow17;endmodule// Multiplier with normalization and rounding.module fpFMAnr(clk, ce, op, rm, a, b, c, o, inf, zero, overflow, underflow, inexact);input clk;input ce;input op;input [2:0] rm;input [MSB:0] a, b, c;output [MSB:0] o;output zero;output inf;output overflow;output underflow;output inexact;wire [EX:0] fma_o;wire fma_underflow;wire fma_overflow;wire norm_underflow;wire norm_inexact;wire sign_exe1, inf1, overflow1, underflow1;wire [MSB+3:0] fpn0;fpFMA #(FPWID) u1(.clk(clk),.ce(ce),.op(op),.rm(rm),.a(a),.b(b),.c(c),.o(fma_o),.under(fma_underflow),.over(fma_overflow),.zero(),.inf());fpNormalize #(FPWID) u2(.clk(clk),.ce(ce),.i(fma_o),.o(fpn0),.under_i(fma_underflow),.under_o(norm_underflow),.inexact_o(norm_inexact));fpRound #(FPWID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );fpDecomp #(FPWID) u4(.i(o), .xz(), .vz(zero), .inf(inf));vtdl u5 (.clk(clk), .ce(ce), .a(4'd11), .d(fma_underflow), .q(underflow));vtdl u6 (.clk(clk), .ce(ce), .a(4'd11), .d(fma_overflow), .q(overflow));delay3 #(1) u7 (.clk(clk), .ce(ce), .i(norm_inexact), .o(inexact));assign overflow = inf;endmodule
