URL
https://opencores.org/ocsvn/ft816float/ft816float/trunk
Subversion Repositories ft816float
[/] [ft816float/] [trunk/] [rtl/] [verilog2/] [fpFMA.v] - Rev 84
Go to most recent revision | Compare with Previous | Blame | View Log
// ============================================================================ // __ // \\__/ o\ (C) 2019 Robert Finch, Waterloo // \ __ / All rights reserved. // \/_// robfinch<remove>@finitron.ca // || // // fpFMA.v // - floating point fused multiplier + adder // - can issue every clock cycle // - parameterized FPWIDth // - IEEE 754 representation // // // This source file is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This source file is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // // ============================================================================ `include "fpConfig.sv" module fpFMA (clk, ce, op, rm, a, b, c, o, under, over, inf, zero); parameter FPWID = 128; parameter MUL_LATENCY = FPWID==128 ? 16 : FPWID==80 ? 16 : FPWID==64 ? 16 : FPWID==32 ? 5 : 1; `include "fpSize.sv" input clk; input ce; input op; // operation 0 = add, 1 = subtract input [2:0] rm; input [MSB:0] a, b, c; output [EX:0] o; output under; output over; output inf; output zero; // constants wire [EMSB:0] infXp = {EMSB+1{1'b1}}; // infinite / NaN - all ones // The following is the value for an exponent of zero, with the offset // eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc. wire [EMSB:0] bias = {1'b0,{EMSB{1'b1}}}; //2^0 exponent // The following is a template for a quiet nan. (MSB=1) wire [FMSB:0] qNaN = {1'b1,{FMSB{1'b0}}}; // ----------------------------------------------------------- // Clock #1 // - decode the input operands // - derive basic information // ----------------------------------------------------------- wire sa1, sb1, sc1; // sign bit wire [EMSB:0] xa1, xb1, xc1; // exponent bits wire [FMSB+1:0] fracta1, fractb1, fractc1; // includes unhidden bit wire a_dn1, b_dn1, c_dn1; // a/b is denormalized wire aNan1, bNan1, cNan1; wire az1, bz1, cz1; wire aInf1, bInf1, cInf1; reg op1; fpDecompReg #(FPWID) u1a (.clk(clk), .ce(ce), .i(a), .sgn(sa1), .exp(xa1), .fract(fracta1), .xz(a_dn1), .vz(az1), .inf(aInf1), .nan(aNan1) ); fpDecompReg #(FPWID) u1b (.clk(clk), .ce(ce), .i(b), .sgn(sb1), .exp(xb1), .fract(fractb1), .xz(b_dn1), .vz(bz1), .inf(bInf1), .nan(bNan1) ); fpDecompReg #(FPWID) u1c (.clk(clk), .ce(ce), .i(c), .sgn(sc1), .exp(xc1), .fract(fractc1), .xz(c_dn1), .vz(cz1), .inf(cInf1), .nan(cNan1) ); always @(posedge clk) if (ce) op1 <= op; // ----------------------------------------------------------- // Clock #2 // Compute the sum of the exponents. // correct the exponent for denormalized operands // adjust the sum by the exponent offset (subtract 127) // mul: ex1 = xa + xb, result should always be < 1ffh // Form partial products (clocks 2 to 5) // ----------------------------------------------------------- reg abz2; reg [EMSB+2:0] ex2; reg [EMSB:0] xc2; reg realOp2; reg xcInf2; always @(posedge clk) if (ce) abz2 <= az1|bz1; always @(posedge clk) if (ce) ex2 <= (xa1|a_dn1) + (xb1|b_dn1) - bias; always @(posedge clk) if (ce) xc2 <= (xc1|c_dn1); always @(posedge clk) if (ce) xcInf2 = &xc1; // Figure out which operation is really needed an add or // subtract ? // If the signs are the same, use the orignal op, // otherwise flip the operation // a + b = add,+ // a + -b = sub, so of larger // -a + b = sub, so of larger // -a + -b = add,- // a - b = sub, so of larger // a - -b = add,+ // -a - b = add,- // -a - -b = sub, so of larger always @(posedge clk) if (ce) realOp2 <= op1 ^ (sa1 ^ sb1) ^ sc1; wire [FX:0] fract17; generate begin : gMults // 16 clocks for multiply if (FPWID==128) begin mult114x114 umul1 (clk, ce, {1'b0,fracta1}, {1'b0,fractb1}, fract17[FX-1:0]); assign fract17[FX] = 1'b0; end else if (FPWID==80) begin mult64x64 umul2 (.CLK(clk), .CE(ce), .A(fracta1), .B(fractb1), .P(fract17[FX-1:0])); assign fract17[FX] = 1'b0; end else if (FPWID==64) begin mult53x53 umul3 (.CLK(clk), .CE(ce), .A(fracta1), .B(fractb1), .P(fract17[FX-1:0])); assign fract17[FX] = 1'b0; end else if (FPWID==32) begin mult24x24 umul4 (.CLK(clk), .CE(ce), .A(fracta1), .B(fractb1), .P(fract17[FX-1:0])); assign fract17[FX] = 1'b0; end else begin reg [FX:0] fract17a; always @(posedge clk) if (ce) fract17a <= fracta1 * fractb1; assign fract17 = fract17a; end end endgenerate // ----------------------------------------------------------- // Clock #3 // Select zero exponent // ----------------------------------------------------------- reg [EMSB+2:0] ex3; reg [EMSB:0] xc3; always @(posedge clk) if (ce) ex3 <= abz2 ? 1'd0 : ex2; always @(posedge clk) if (ce) xc3 <= xc2; // ----------------------------------------------------------- // Clock #4 // Generate partial products. // ----------------------------------------------------------- reg [EMSB+2:0] ex4; reg [EMSB:0] xc4; always @(posedge clk) if (ce) ex4 <= ex3; always @(posedge clk) if (ce) xc4 <= xc3; // ----------------------------------------------------------- // Clock #5 // Sum partial products (above) // compute multiplier overflow and underflow // ----------------------------------------------------------- // Status wire under5; wire over5; wire [EMSB+2:0] ex5; wire [EMSB:0] xc5; wire aInf5, bInf5; wire aNan5, bNan5; wire qNaNOut5; vtdl u5a (.clk(clk), .ce(ce), .a(MUL_LATENCY-5), .d(ex4[EMSB+2]), .q(under5)); vtdl u5b (.clk(clk), .ce(ce), .a(MUL_LATENCY-5), .d((&ex4[EMSB:0] | ex4[EMSB+1]) & !ex4[EMSB+2]), .q(over5)); vtdl #(EMSB+3) u5c (.clk(clk), .ce(ce), .a(MUL_LATENCY-5), .d(ex4), .q(ex5)); vtdl #(EMSB+1) u5d (.clk(clk), .ce(ce), .a(MUL_LATENCY-5), .d(xc4), .q(xc5)); vtdl u2a (.clk(clk), .ce(ce), .a(MUL_LATENCY-2), .d(aInf1), .q(aInf5) ); vtdl u2b (.clk(clk), .ce(ce), .a(MUL_LATENCY-2), .d(bInf1), .q(bInf5) ); // determine when a NaN is output wire [MSB:0] a5,b5; vtdl u5 (.clk(clk), .ce(ce), .a(MUL_LATENCY-2), .d((aInf1&bz1)|(bInf1&az1)), .q(qNaNOut5) ); vtdl u14 (.clk(clk), .ce(ce), .a(MUL_LATENCY-2), .d(aNan1), .q(aNan5) ); vtdl u15 (.clk(clk), .ce(ce), .a(MUL_LATENCY-2), .d(bNan1), .q(bNan5) ); vtdl #(MSB+1) u16 (.clk(clk), .ce(ce), .a(MUL_LATENCY-1), .d(a), .q(a5) ); vtdl #(MSB+1) u17 (.clk(clk), .ce(ce), .a(MUL_LATENCY-1), .d(b), .q(b5) ); // ----------------------------------------------------------- // Clock #6 // - figure multiplier mantissa output // - figure multiplier exponent output // - correct xponent and mantissa for exceptional conditions // ----------------------------------------------------------- reg [FX:0] mo6; reg [EMSB+2:0] ex6; reg [EMSB:0] xc6; wire [FMSB+1:0] fractc6; wire under6; vtdl #(FMSB+2) u61 (.clk(clk), .ce(ce), .a(MUL_LATENCY-1), .d(fractc1), .q(fractc6) ); delay1 u62 (.clk(clk), .ce(ce), .i(under5), .o(under6)); always @(posedge clk) if (ce) xc6 <= xc5; always @(posedge clk) if (ce) casez({aNan5,bNan5,qNaNOut5,aInf5,bInf5,over5}) 6'b1?????: mo6 <= {1'b1,1'b1,a5[FMSB-1:0],{FMSB+1{1'b0}}}; 6'b01????: mo6 <= {1'b1,1'b1,b5[FMSB-1:0],{FMSB+1{1'b0}}}; 6'b001???: mo6 <= {1'b1,qNaN|3'd4,{FMSB+1{1'b0}}}; // multiply inf * zero 6'b0001??: mo6 <= 0; // mul inf's 6'b00001?: mo6 <= 0; // mul inf's 6'b000001: mo6 <= 0; // mul overflow default: mo6 <= fract17; endcase always @(posedge clk) if (ce) casez({qNaNOut5|aNan5|bNan5,aInf5,bInf5,over5,under5}) 5'b1????: ex6 <= infXp; // qNaN - infinity * zero 5'b01???: ex6 <= infXp; // 'a' infinite 5'b001??: ex6 <= infXp; // 'b' infinite 5'b0001?: ex6 <= infXp; // result overflow 5'b00001: ex6 <= ex5; //0; // underflow default: ex6 <= ex5; // situation normal endcase // ----------------------------------------------------------- // Clock #7 // - prep for addition, determine greater operand // ----------------------------------------------------------- reg ex_gt_xc7; reg xeq7; reg ma_gt_mc7; reg meq7; wire az7, bz7, cz7; wire realOp7; // which has greater magnitude ? Used for sign calc always @(posedge clk) if (ce) ex_gt_xc7 <= $signed(ex6) > $signed({2'b0,xc6}); always @(posedge clk) if (ce) xeq7 <= (ex6=={2'b0,xc6}); always @(posedge clk) if (ce) ma_gt_mc7 <= mo6 > {fractc6,{FMSB+1{1'b0}}}; always @(posedge clk) if (ce) meq7 <= mo6 == {fractc6,{FMSB+1{1'b0}}}; vtdl #(1,32) u71 (.clk(clk), .ce(ce), .a(MUL_LATENCY), .d(az1), .q(az7)); vtdl #(1,32) u72 (.clk(clk), .ce(ce), .a(MUL_LATENCY), .d(bz1), .q(bz7)); vtdl #(1,32) u73 (.clk(clk), .ce(ce), .a(MUL_LATENCY), .d(cz1), .q(cz7)); vtdl #(1,32) u74 (.clk(clk), .ce(ce), .a(MUL_LATENCY-1), .d(realOp2), .q(realOp7)); // ----------------------------------------------------------- // Clock #8 // - prep for addition, determine greater operand // - determine if result will be zero // ----------------------------------------------------------- reg a_gt_b8; reg resZero8; reg ex_gt_xc8; wire [EMSB+2:0] ex8; wire [EMSB:0] xc8; wire xcInf8; wire [2:0] rm8; wire op8; wire sa8, sc8; delay2 #(EMSB+3) u81 (.clk(clk), .ce(ce), .i(ex6), .o(ex8)); delay2 #(EMSB+1) u82 (.clk(clk), .ce(ce), .i(xc6), .o(xc8)); vtdl #(1,32) u83 (.clk(clk), .ce(ce), .a(MUL_LATENCY-1), .d(xcInf2), .q(xcInf8)); vtdl #(3,32) u84 (.clk(clk), .ce(ce), .a(MUL_LATENCY+1), .d(rm), .q(rm8)); vtdl #(1,32) u85 (.clk(clk), .ce(ce), .a(MUL_LATENCY), .d(op1), .q(op8)); vtdl #(1,32) u86 (.clk(clk), .ce(ce), .a(MUL_LATENCY), .d(sa1 ^ sb1), .q(sa8)); vtdl #(1,32) u87 (.clk(clk), .ce(ce), .a(MUL_LATENCY), .d(sc1), .q(sc8)); always @(posedge clk) if (ce) ex_gt_xc8 <= ex_gt_xc7; always @(posedge clk) if (ce) a_gt_b8 <= ex_gt_xc7 || (xeq7 && ma_gt_mc7); // Find out if the result will be zero. always @(posedge clk) if (ce) resZero8 <= (realOp7 & xeq7 & meq7) || // subtract, same magnitude ((az7 | bz7) & cz7); // a or b zero and c zero // ----------------------------------------------------------- // CLock #9 // Compute output exponent and sign // // The output exponent is the larger of the two exponents, // unless a subtract operation is in progress and the two // numbers are equal, in which case the exponent should be // zero. // ----------------------------------------------------------- reg so9; reg [EMSB+2:0] ex9; reg [EMSB+2:0] ex9a; reg ex_gt_xc9; reg [EMSB:0] xc9; reg a_gt_c9; wire [FX:0] mo9; wire [FMSB+1:0] fractc9; wire under9; wire xeq9; always @(posedge clk) if (ce) ex_gt_xc9 <= ex_gt_xc8; always @(posedge clk) if (ce) a_gt_c9 <= a_gt_b8; always @(posedge clk) if (ce) xc9 <= xc8; always @(posedge clk) if (ce) ex9a <= ex8; delay3 #(FX+1) u93 (.clk(clk), .ce(ce), .i(mo6), .o(mo9)); delay3 #(FMSB+2) u94 (.clk(clk), .ce(ce), .i(fractc6), .o(fractc9)); delay3 u95 (.clk(clk), .ce(ce), .i(under6), .o(under9)); delay2 u96 (.clk(clk), .ce(ce), .i(xeq7), .o(xeq9)); always @(posedge clk) if (ce) ex9 <= resZero8 ? 1'd0 : ex_gt_xc8 ? ex8 : {2'b0,xc8}; // Compute output sign always @(posedge clk) if (ce) case ({resZero8,sa8,op8,sc8}) // synopsys full_case parallel_case 4'b0000: so9 <= 0; // + + + = + 4'b0001: so9 <= !a_gt_b8; // + + - = sign of larger 4'b0010: so9 <= !a_gt_b8; // + - + = sign of larger 4'b0011: so9 <= 0; // + - - = + 4'b0100: so9 <= a_gt_b8; // - + + = sign of larger 4'b0101: so9 <= 1; // - + - = - 4'b0110: so9 <= 1; // - - + = - 4'b0111: so9 <= a_gt_b8; // - - - = sign of larger 4'b1000: so9 <= 0; // A + B, sign = + 4'b1001: so9 <= rm8==3; // A + -B, sign = + unless rounding down 4'b1010: so9 <= rm8==3; // A - B, sign = + unless rounding down 4'b1011: so9 <= 0; // +A - -B, sign = + 4'b1100: so9 <= rm8==3; // -A + B, sign = + unless rounding down 4'b1101: so9 <= 1; // -A + -B, sign = - 4'b1110: so9 <= 1; // -A - +B, sign = - 4'b1111: so9 <= rm8==3; // -A - -B, sign = + unless rounding down endcase // ----------------------------------------------------------- // Clock #10 // Compute the difference in exponents, provides shift amount // Note that ex9a will be negative for an underflow condition // so it's added rather than subtracted from xc9 as -(-num) // is the same as an add. The underflow is tracked rather than // using extra bits in the exponent. // ----------------------------------------------------------- reg [EMSB+2:0] xdiff10; reg [FX:0] mfs; reg ops10; // If the multiplier exponent was negative (underflowed) then // the mantissa needs to be shifted right even more (until // the exponent is zero. The total shift would be xc9-0- // amount underflows which is xc9 + -ex9a. always @(posedge clk) if (ce) xdiff10 <= ex_gt_xc9 ? ex9a - xc9 : ex9a[EMSB+2] ? xc9 + (~ex9a+2'd1) : xc9 - ex9a; // Determine which fraction to denormalize (the one with the // smaller exponent is denormalized). If the exponents are equal // denormalize the smaller fraction. always @(posedge clk) if (ce) mfs <= xeq9 ? (a_gt_c9 ? {4'b0,fractc9,{FMSB+1{1'b0}}} : mo9) : ex_gt_xc9 ? {4'b0,fractc9,{FMSB+1{1'b0}}} : mo9; always @(posedge clk) if (ce) ops10 <= xeq9 ? (a_gt_c9 ? 1'b1 : 1'b0) : (ex_gt_xc9 ? 1'b1 : 1'b0); // ----------------------------------------------------------- // Clock #11 // Limit the size of the shifter to only bits needed. // ----------------------------------------------------------- reg [7:0] xdif11; always @(posedge clk) if (ce) xdif11 <= xdiff10 > FX+3 ? FX+3 : xdiff10; // ----------------------------------------------------------- // Clock #12 // Determine the sticky bit // ----------------------------------------------------------- wire sticky, sticky12; wire [FX:0] mfs12; wire [7:0] xdif12; generate begin if (FPWID==128) redor128 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) ); else if (FPWID==80) redor80 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) ); else if (FPWID==64) redor64 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) ); else if (FPWID==32) redor32 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) ); end endgenerate // register inputs to shifter and shift delay1 #(1) u122(.clk(clk), .ce(ce), .i(sticky), .o(sticky12) ); delay1 #(8) u123(.clk(clk), .ce(ce), .i(xdif11), .o(xdif12) ); delay2 #(FX+1) u124(.clk(clk), .ce(ce), .i(mfs), .o(mfs12) ); // ----------------------------------------------------------- // Clock #13 // - denormalize operand (shift right) // ----------------------------------------------------------- reg [FX+2:0] mfs13; wire [FX:0] mo13; wire ex_gt_xc13; wire [FMSB+1:0] fractc13; wire ops13; delay4 #(FX+1) u131 (.clk(clk), .ce(ce), .i(mo9), .o(mo13)); delay4 u132 (.clk(clk), .ce(ce), .i(ex_gt_xc9), .o(ex_gt_xc13)); vtdl #(FMSB+2) u133 (.clk(clk), .ce(ce), .a(4'd3), .d(fractc9), .q(fractc13)); delay3 u134 (.clk(clk), .ce(ce), .i(ops10), .o(ops13)); always @(posedge clk) if (ce) mfs13 <= ({mfs12,2'b0} >> xdif12)|sticky12; // ----------------------------------------------------------- // Clock #14 // Sort operands // ----------------------------------------------------------- reg [FX+2:0] oa, ob; wire a_gt_b14; vtdl #(1) u141 (.clk(clk), .ce(ce), .a(4'd5), .d(a_gt_b8), .q(a_gt_b14)); always @(posedge clk) if (ce) oa <= ops13 ? {mo13,2'b00} : mfs13; always @(posedge clk) if (ce) ob <= ops13 ? mfs13 : {fractc13,{FMSB+1{1'b0}},2'b00}; // ----------------------------------------------------------- // Clock #15 // - Sort operands // ----------------------------------------------------------- reg [FX+2:0] oaa, obb; wire realOp15; wire [EMSB:0] ex15; wire [EMSB:0] ex9c = ex9[EMSB+1] ? infXp : ex9[EMSB:0]; wire overflow15; vtdl #(1) u151 (.clk(clk), .ce(ce), .a(4'd7), .d(realOp7), .q(realOp15)); vtdl #(EMSB+1) u152 (.clk(clk), .ce(ce), .a(4'd5), .d(ex9c), .q(ex15)); vtdl #(EMSB+1) u153 (.clk(clk), .ce(ce), .a(4'd5), .d(ex9[EMSB+1]| &ex9[EMSB:0]), .q(overflow15)); always @(posedge clk) if (ce) oaa <= a_gt_b14 ? oa : ob; always @(posedge clk) if (ce) obb <= a_gt_b14 ? ob : oa; // ----------------------------------------------------------- // Clock #16 // - perform add/subtract // - addition can generate an extra bit, subtract can't go negative // ----------------------------------------------------------- reg [FX+3:0] mab; wire [FX:0] mo16; wire [FMSB+1:0] fractc16; wire Nan16; wire cNan16; wire aInf16, cInf16; wire op16; wire exinf16; vtdl #(1) u161 (.clk(clk), .ce(ce), .a(4'd10), .d(qNaNOut5|aNan5|bNan5), .q(Nan16)); vtdl #(1) u162 (.clk(clk), .ce(ce), .a(4'd14), .d(cNan1), .q(cNan16)); vtdl #(1) u163 (.clk(clk), .ce(ce), .a(4'd9), .d(&ex6), .q(aInf16)); vtdl #(1) u164 (.clk(clk), .ce(ce), .a(4'd14), .d(cInf1), .q(cInf16)); vtdl #(1) u165 (.clk(clk), .ce(ce), .a(4'd14), .d(op1), .q(op16)); delay3 #(FX+1) u166 (.clk(clk), .ce(ce), .i(mo13), .o(mo16)); vtdl #(FMSB+2) u167 (.clk(clk), .ce(ce), .a(4'd6), .d(fractc9), .q(fractc16)); delay1 u169 (.clk(clk), .ce(ce), .i(&ex15), .o(exinf16)); always @(posedge clk) if (ce) mab <= realOp15 ? oaa - obb : oaa + obb; // ----------------------------------------------------------- // Clock #17 // - adjust for Nans // ----------------------------------------------------------- wire [EMSB:0] ex17; reg [FX:0] mo17; wire so17; wire exinf17; wire overflow17; vtdl #(1) u171 (.clk(clk), .ce(ce), .a(4'd7), .d(so9), .q(so17)); delay2 #(EMSB+1) u172 (.clk(clk), .ce(ce), .i(ex15), .o(ex17)); delay1 #(1) u173 (.clk(clk), .ce(ce), .i(exinf16), .o(exinf17)); delay2 u174 (.clk(clk), .ce(ce), .i(overflow15), .o(overflow17)); always @(posedge clk) casez({aInf16&cInf16,Nan16,cNan16,exinf16}) 4'b1???: mo17 <= {1'b0,op16,{FMSB-1{1'b0}},op16,{FMSB{1'b0}}}; // inf +/- inf - generate QNaN on subtract, inf on add 4'b01??: mo17 <= {1'b0,mo16}; 4'b001?: mo17 <= {1'b1,1'b1,fractc16[FMSB-1:0],{FMSB+1{1'b0}}}; 4'b0001: mo17 <= 1'd0; default: mo17 <= mab[FX+3:2]; // mab has two extra lead bits and two trailing bits endcase assign o = {so17,ex17,mo17}; assign zero = {ex17,mo17}==1'd0; assign inf = exinf17; assign under = ex17==1'd0; assign over = overflow17; endmodule // Multiplier with normalization and rounding. module fpFMAnr(clk, ce, op, rm, a, b, c, o, inf, zero, overflow, underflow, inexact); parameter FPWID=128; `include "fpSize.sv" input clk; input ce; input op; input [2:0] rm; input [MSB:0] a, b, c; output [MSB:0] o; output zero; output inf; output overflow; output underflow; output inexact; wire [EX:0] fma_o; wire fma_underflow; wire fma_overflow; wire norm_underflow; wire norm_inexact; wire sign_exe1, inf1, overflow1, underflow1; wire [MSB+3:0] fpn0; fpFMA #(FPWID) u1 ( .clk(clk), .ce(ce), .op(op), .rm(rm), .a(a), .b(b), .c(c), .o(fma_o), .under(fma_underflow), .over(fma_overflow), .zero(), .inf() ); fpNormalize #(FPWID) u2 ( .clk(clk), .ce(ce), .i(fma_o), .o(fpn0), .under_i(fma_underflow), .under_o(norm_underflow), .inexact_o(norm_inexact) ); fpRound #(FPWID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) ); fpDecomp #(FPWID) u4(.i(o), .xz(), .vz(zero), .inf(inf)); vtdl u5 (.clk(clk), .ce(ce), .a(4'd11), .d(fma_underflow), .q(underflow)); vtdl u6 (.clk(clk), .ce(ce), .a(4'd11), .d(fma_overflow), .q(overflow)); delay3 #(1) u7 (.clk(clk), .ce(ce), .i(norm_inexact), .o(inexact)); assign overflow = inf; endmodule
Go to most recent revision | Compare with Previous | Blame | View Log