URL
https://opencores.org/ocsvn/ft816float/ft816float/trunk
Subversion Repositories ft816float
[/] [ft816float/] [trunk/] [rtl/] [verilog2/] [fpMultiply.sv] - Rev 48
Go to most recent revision | Compare with Previous | Blame | View Log
// ============================================================================// __// \\__/ o\ (C) 2006-2020 Robert Finch, Waterloo// \ __ / All rights reserved.// \/_// robfinch<remove>@finitron.ca// ||//// fpMultiply.v// - floating point multiplier// - two cycle latency// - can issue every clock cycle// - parameterized width// - IEEE 754 representation////// This source file is free software: you can redistribute it and/or modify// it under the terms of the GNU Lesser General Public License as published// by the Free Software Foundation, either version 3 of the License, or// (at your option) any later version.//// This source file is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU General Public License for more details.//// You should have received a copy of the GNU General Public License// along with this program. If not, see <http://www.gnu.org/licenses/>.//// Floating Point Multiplier / Divider//// This multiplier/divider handles denormalized numbers.// The output format is of an internal expanded representation// in preparation to be fed into a normalization unit, then// rounding. Basically, it's the same as the regular format// except the mantissa is doubled in size, the leading two// bits of which are assumed to be whole bits.////// Floating Point Multiplier//// Properties:// +-inf * +-inf = -+inf (this is handled by exOver)// +-inf * 0 = QNaN//// 1 sign number// 8 exponent// 48 mantissa//// ============================================================================import fp::*;module fpMultiply(clk, ce, a, b, o, sign_exe, inf, overflow, underflow);input clk;input ce;input [MSB:0] a, b;output [EX:0] o;output sign_exe;output inf;output overflow;output underflow;reg [EMSB:0] xo1; // extra bit for signreg [FX:0] mo1;// constantswire [EMSB:0] infXp = {EMSB+1{1'b1}}; // infinite / NaN - all ones// The following is the value for an exponent of zero, with the offset// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.wire [EMSB:0] bias = {1'b0,{EMSB{1'b1}}}; //2^0 exponent// The following is a template for a quiet nan. (MSB=1)wire [FMSB:0] qNaN = {1'b1,{FMSB{1'b0}}};// variablesreg [FX:0] fract1,fract1a;wire [FX:0] fracto;wire [EMSB+2:0] ex1; // sum of exponentswire [EMSB :0] ex2;// Decompose the operandswire sa, sb; // sign bitwire [EMSB:0] xa, xb; // exponent bitswire [FMSB+1:0] fracta, fractb;wire a_dn, b_dn; // a/b is denormalizedwire aNan, bNan, aNan1, bNan1;wire az, bz;wire aInf, bInf, aInf1, bInf1;// -----------------------------------------------------------// First clock// - decode the input operands// - derive basic information// - calculate exponent// - calculate fraction// -----------------------------------------------------------fpDecomp u1a (.i(a), .sgn(sa), .exp(xa), .fract(fracta), .xz(a_dn), .vz(az), .inf(aInf), .nan(aNan) );fpDecomp u1b (.i(b), .sgn(sb), .exp(xb), .fract(fractb), .xz(b_dn), .vz(bz), .inf(bInf), .nan(bNan) );// Compute the sum of the exponents.// correct the exponent for denormalized operands// adjust the sum by the exponent offset (subtract 127)// mul: ex1 = xa + xb, result should always be < 1ffhassign ex1 = (az|bz) ? 0 : (xa|a_dn) + (xb|b_dn) - bias;generateif (FPWID==80) beginreg [31:0] p00,p01,p02,p03;reg [31:0] p10,p11,p12,p13;reg [31:0] p20,p21,p22,p23;reg [31:0] p30,p31,p32,p33;always @(posedge clk)if (ce) beginp00 <= fracta[15: 0] * fractb[15: 0];p01 <= fracta[31:16] * fractb[15: 0];p02 <= fracta[47:32] * fractb[15: 0];p03 <= fracta[63:48] * fractb[15: 0];p10 <= fracta[15: 0] * fractb[31:16];p11 <= fracta[31:16] * fractb[31:16];p12 <= fracta[47:32] * fractb[31:16];p13 <= fracta[63:48] * fractb[31:16];p20 <= fracta[15: 0] * fractb[47:32];p21 <= fracta[31:16] * fractb[47:32];p22 <= fracta[47:32] * fractb[47:32];p23 <= fracta[63:48] * fractb[47:32];p30 <= fracta[15: 0] * fractb[63:48];p31 <= fracta[31:16] * fractb[63:48];p32 <= fracta[47:32] * fractb[63:48];p33 <= fracta[63:48] * fractb[63:48];fract1 <= {p03,48'b0} + {p02,32'b0} + {p01,16'b0} + p00 +{p13,64'b0} + {p12,48'b0} + {p11,32'b0} + {p10,16'b0} +{p23,80'b0} + {p22,64'b0} + {p21,48'b0} + {p20,32'b0} +{p33,96'b0} + {p32,80'b0} + {p31,64'b0} + {p30,48'b0};endendelse if (FPWID==64) beginreg [35:0] p00,p01,p02;reg [35:0] p10,p11,p12;reg [35:0] p20,p21,p22;always @(posedge clk)if (ce) beginp00 <= fracta[17: 0] * fractb[17: 0];p01 <= fracta[35:18] * fractb[17: 0];p02 <= fracta[52:36] * fractb[17: 0];p10 <= fracta[17: 0] * fractb[35:18];p11 <= fracta[35:18] * fractb[35:18];p12 <= fracta[52:36] * fractb[35:18];p20 <= fracta[17: 0] * fractb[52:36];p21 <= fracta[35:18] * fractb[52:36];p22 <= fracta[52:36] * fractb[52:36];fract1 <= {p02,36'b0} + {p01,18'b0} + p00 +{p12,54'b0} + {p11,36'b0} + {p10,18'b0} +{p22,72'b0} + {p21,54'b0} + {p20,36'b0};endendelse if (FPWID==32) beginreg [23:0] p00,p01,p02;reg [23:0] p10,p11,p12;reg [23:0] p20,p21,p22;always @(posedge clk)if (ce) beginp00 <= fracta[11: 0] * fractb[11: 0];p01 <= fracta[23:12] * fractb[11: 0];p10 <= fracta[11: 0] * fractb[23:12];p11 <= fracta[23:12] * fractb[23:12];fract1 <= {p11,p00} + {p01,12'b0} + {p10,12'b0};endendelse beginalways @(posedge clk)if (ce) beginfract1a <= fracta * fractb;fract1 <= fract1a;endendendgenerate// Statuswire under1, over1;wire under = ex1[EMSB+2]; // exponent underflowwire over = (&ex1[EMSB:0] | ex1[EMSB+1]) & !ex1[EMSB+2];delay2 #(EMSB+1) u3 (.clk(clk), .ce(ce), .i(ex1[EMSB:0]), .o(ex2) );delay2 u2a (.clk(clk), .ce(ce), .i(aInf), .o(aInf1) );delay2 u2b (.clk(clk), .ce(ce), .i(bInf), .o(bInf1) );delay2 u6 (.clk(clk), .ce(ce), .i(under), .o(under1) );delay2 u7 (.clk(clk), .ce(ce), .i(over), .o(over1) );// determine when a NaN is outputwire qNaNOut;wire [FPWID-1:0] a1,b1;delay2 u5 (.clk(clk), .ce(ce), .i((aInf&bz)|(bInf&az)), .o(qNaNOut) );delay2 u14 (.clk(clk), .ce(ce), .i(aNan), .o(aNan1) );delay2 u15 (.clk(clk), .ce(ce), .i(bNan), .o(bNan1) );delay2 #(FPWID) u16 (.clk(clk), .ce(ce), .i(a), .o(a1) );delay2 #(FPWID) u17 (.clk(clk), .ce(ce), .i(b), .o(b1) );// -----------------------------------------------------------// Second clock// - correct xponent and mantissa for exceptional conditions// -----------------------------------------------------------wire so1;delay3 u8 (.clk(clk), .ce(ce), .i(sa ^ sb), .o(so1) );// two clock delay!always @(posedge clk)if (ce)casez({qNaNOut|aNan1|bNan1,aInf1,bInf1,over1,under1})5'b1????: xo1 = infXp; // qNaN - infinity * zero5'b01???: xo1 = infXp; // 'a' infinite5'b001??: xo1 = infXp; // 'b' infinite5'b0001?: xo1 = infXp; // result overflow5'b00001: xo1 = ex2[EMSB:0];//0; // underflowdefault: xo1 = ex2[EMSB:0]; // situation normalendcasealways @(posedge clk)if (ce)casez({aNan1,bNan1,qNaNOut,aInf1,bInf1,over1})6'b1?????: mo1 = {1'b1,a1[FMSB:0],{FMSB+1{1'b0}}};6'b01????: mo1 = {1'b1,b1[FMSB:0],{FMSB+1{1'b0}}};6'b001???: mo1 = {1'b1,qNaN|3'd4,{FMSB+1{1'b0}}}; // multiply inf * zero6'b0001??: mo1 = 0; // mul inf's6'b00001?: mo1 = 0; // mul inf's6'b000001: mo1 = 0; // mul overflowdefault: mo1 = fract1;endcasedelay3 u10 (.clk(clk), .ce(ce), .i(sa & sb), .o(sign_exe) );delay1 u11 (.clk(clk), .ce(ce), .i(over1), .o(overflow) );delay1 u12 (.clk(clk), .ce(ce), .i(over1), .o(inf) );delay1 u13 (.clk(clk), .ce(ce), .i(under1), .o(underflow) );assign o = {so1,xo1,mo1};endmodule// Multiplier with normalization and rounding.module fpMulnr(clk, ce, a, b, o, rm, sign_exe, inf, overflow, underflow);input clk;input ce;input [MSB:0] a, b;output [MSB:0] o;input [2:0] rm;output sign_exe;output inf;output overflow;output underflow;wire [EX:0] o1;wire sign_exe1, inf1, overflow1, underflow1;wire [MSB+3:0] fpn0;fpMul #(FPWID) u1 (clk, ce, a, b, o1, sign_exe1, inf1, overflow1, underflow1);fpNormalize #(FPWID) u2(.clk(clk), .ce(ce), .under_i(underflow1), .i(o1), .o(fpn0) );fpRound #(FPWID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );delay2 #(1) u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe));delay2 #(1) u5(.clk(clk), .ce(ce), .i(inf1), .o(inf));delay2 #(1) u6(.clk(clk), .ce(ce), .i(overflow1), .o(overflow));delay2 #(1) u7(.clk(clk), .ce(ce), .i(underflow1), .o(underflow));endmodule
Go to most recent revision | Compare with Previous | Blame | View Log
