URL
https://opencores.org/ocsvn/ft816float/ft816float/trunk
Subversion Repositories ft816float
[/] [ft816float/] [trunk/] [rtl/] [verilog2/] [fpNormalize.sv] - Rev 49
Compare with Previous | Blame | View Log
// ============================================================================// __// \\__/ o\ (C) 2006-2020 Robert Finch, Waterloo// \ __ / All rights reserved.// \/_// robfinch<remove>@finitron.ca// ||//// fpNormalize.sv// - floating point normalization unit// - eight cycle latency// - parameterized width// - IEEE 754 representation////// This source file is free software: you can redistribute it and/or modify// it under the terms of the GNU Lesser General Public License as published// by the Free Software Foundation, either version 3 of the License, or// (at your option) any later version.//// This source file is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU General Public License for more details.//// You should have received a copy of the GNU General Public License// along with this program. If not, see <http://www.gnu.org/licenses/>.//// This unit takes a floating point number in an intermediate// format and normalizes it. No normalization occurs// for NaN's or infinities. The unit has a two cycle latency.//// The mantissa is assumed to start with two whole bits on// the left. The remaining bits are fractional.//// The width of the incoming format is reduced via a generation// of sticky bit in place of the low order fractional bits.//// On an underflowed input, the incoming exponent is assumed// to be negative. A right shift is needed.// ============================================================================import fp::*;module fpNormalize(clk, ce, i, o, under_i, under_o, inexact_o);input clk;input ce;input [EX:0] i; // expanded format inputoutput [MSB+3:0] o; // normalized output + guard, sticky and round bits, + 1 whole digitinput under_i;output under_o;output inexact_o;integer n;// ----------------------------------------------------------------------------// No Clock required// ----------------------------------------------------------------------------reg [EMSB:0] xo0;reg so0;always @*xo0 <= i[EX-1:FX+1];always @*so0 <= i[EX]; // sign doesn't change// ----------------------------------------------------------------------------// Clock #1// - Capture exponent information// ----------------------------------------------------------------------------reg xInf1a, xInf1b, xInf1c;wire [FX:0] i1;delay1 #(FX+1) u11 (.clk(clk), .ce(ce), .i(i), .o(i1));always @(posedge clk)if (ce) xInf1a <= &xo0 & !under_i;always @(posedge clk)if (ce) xInf1b <= &xo0[EMSB:1] & !under_i;always @(posedge clk)if (ce) xInf1c = &xo0;// ----------------------------------------------------------------------------// Clock #2// - determine exponent increment// Since the there are *three* whole digits in the incoming format// the number of whole digits needs to be reduced. If the MSB is// set, then increment the exponent and no shift is needed.// ----------------------------------------------------------------------------wire xInf2c, xInf2b;wire [EMSB:0] xo2;reg incExpByOne2, incExpByTwo2;delay1 u21 (.clk(clk), .ce(ce), .i(xInf1c), .o(xInf2c));delay1 u22 (.clk(clk), .ce(ce), .i(xInf1b), .o(xInf2b));delay2 #(EMSB+1) u23 (.clk(clk), .ce(ce), .i(xo0), .o(xo2));delay2 u24 (.clk(clk), .ce(ce), .i(under_i), .o(under2));always @(posedge clk)if (ce) incExpByTwo2 <= !xInf1b & i1[FX];always @(posedge clk)if (ce) incExpByOne2 <= !xInf1a & i1[FX-1];// ----------------------------------------------------------------------------// Clock #3// - increment exponent// - detect a zero mantissa// ----------------------------------------------------------------------------wire incExpByTwo3;wire incExpByOne3;wire [FX:0] i3;reg [EMSB:0] xo3;reg zeroMan3;delay1 u31 (.clk(clk), .ce(ce), .i(incExpByTwo2), .o(incExpByTwo3));delay1 u32 (.clk(clk), .ce(ce), .i(incExpByOne2), .o(incExpByOne3));delay3 #(FX+1) u33 (.clk(clk), .ce(ce), .i(i[FX:0]), .o(i3));wire [EMSB+1:0] xv3a = xo2 + {incExpByTwo2,1'b0};wire [EMSB+1:0] xv3b = xo2 + incExpByOne2;always @(posedge clk)if (ce) xo3 <= xo2 + (incExpByTwo2 ? 2'd2 : incExpByOne2 ? 2'd1 : 2'd0);always @(posedge clk)if(ce) zeroMan3 <= ((xv3b[EMSB+1]|| &xv3b[EMSB:0])||(xv3a[EMSB+1]| &xv3a[EMSB:0]))&& !under2 && !xInf2c;// ----------------------------------------------------------------------------// Clock #4// - Shift mantissa left// - If infinity is reached then set the mantissa to zero// shift mantissa left to reduce to a single whole digit// - create sticky bit// ----------------------------------------------------------------------------reg [FMSB+4:0] mo4;reg inexact4;always @(posedge clk)if(ce)casez({zeroMan3,incExpByTwo3,incExpByOne3})3'b1??: mo4 <= 1'd0;3'b01?: mo4 <= {i3[FX:FMSB+1],|i3[FMSB:0]};3'b001: mo4 <= {i3[FX-1:FMSB],|i3[FMSB-1:0]};default: mo4 <= {i3[FX-2:FMSB-1],|i3[FMSB-2:0]};endcasealways @(posedge clk)if(ce)casez({zeroMan3,incExpByTwo3,incExpByOne3})3'b1??: inexact4 <= 1'd0;3'b01?: inexact4 <= |i3[FMSB:0];3'b001: inexact4 <= |i3[FMSB-1:0];default: inexact4 <= |i3[FMSB-2:0];endcase// ----------------------------------------------------------------------------// Clock edge #5// - count leading zeros// ----------------------------------------------------------------------------wire [7:0] leadingZeros5;wire [EMSB:0] xo5;wire xInf5;delay2 #(EMSB+1) u51 (.clk(clk), .ce(ce), .i(xo3), .o(xo5));delay3 #(1) u52 (.clk(clk), .ce(ce), .i(xInf2c), .o(xInf5) );generatebeginif (FPWID <= 32) begincntlz32Reg clz0 (.clk(clk), .ce(ce), .i({mo4,5'b0}), .o(leadingZeros5) );assign leadingZeros5[7:6] = 2'b00;endelse if (FPWID<=64) beginassign leadingZeros5[7] = 1'b0;cntlz64Reg clz0 (.clk(clk), .ce(ce), .i({mo4,8'h0}), .o(leadingZeros5) );endelse if (FPWID<=80) beginassign leadingZeros5[7] = 1'b0;cntlz80Reg clz0 (.clk(clk), .ce(ce), .i({mo4,12'b0}), .o(leadingZeros5) );endelse if (FPWID<=84) beginassign leadingZeros5[7] = 1'b0;cntlz96Reg clz0 (.clk(clk), .ce(ce), .i({mo4,24'b0}), .o(leadingZeros5) );endelse if (FPWID<=96) beginassign leadingZeros5[7] = 1'b0;cntlz96Reg clz0 (.clk(clk), .ce(ce), .i({mo4,12'b0}), .o(leadingZeros5) );endelse if (FPWID<=128)cntlz128Reg clz0 (.clk(clk), .ce(ce), .i({mo4,12'b0}), .o(leadingZeros5) );endendgenerate// ----------------------------------------------------------------------------// Clock edge #6// - Compute how much we want to decrement exponent by// - compute amount to shift left and right// - at infinity the exponent can't be incremented, so we can't shift right// otherwise it was an underflow situation so the exponent was negative// shift amount needs to be negated for shift register// If the exponent underflowed, then the shift direction must be to the// right regardless of mantissa bits; the number is denormalized.// Otherwise the shift direction must be to the left.// ----------------------------------------------------------------------------reg [7:0] lshiftAmt6;reg [7:0] rshiftAmt6;wire rightOrLeft6; // 0=left,1=rightwire xInf6;wire [EMSB:0] xo6;wire [FMSB+4:0] mo6;wire zeroMan6;vtdl #(1) u61 (.clk(clk), .ce(ce), .a(4'd5), .d(under_i), .q(rightOrLeft6) );delay1 #(EMSB+1) u62 (.clk(clk), .ce(ce), .i(xo5), .o(xo6));delay2 #(FMSB+5) u63 (.clk(clk), .ce(ce), .i(mo4), .o(mo6) );delay1 #(1) u64 (.clk(clk), .ce(ce), .i(xInf5), .o(xInf6) );delay3 u65 (.clk(clk), .ce(ce), .i(zeroMan3), .o(zeroMan6));always @(posedge clk)if (ce) lshiftAmt6 <= leadingZeros5 > xo5 ? xo5 : leadingZeros5;always @(posedge clk)if (ce) rshiftAmt6 <= xInf5 ? 1'd0 : $signed(xo5) > 1'd0 ? 1'd0 : ~xo5+2'd1; // xo2 is negative !// ----------------------------------------------------------------------------// Clock edge #7// - figure exponent// - shift mantissa// - figure sticky bit// ----------------------------------------------------------------------------reg [EMSB:0] xo7;wire rightOrLeft7;reg [FMSB+4:0] mo7l, mo7r;reg St6,St7;delay1 u71 (.clk(clk), .ce(ce), .i(rightOrLeft6), .o(rightOrLeft7));always @(posedge clk)if (ce)xo7 <= zeroMan6 ? xo6 :xInf6 ? xo6 : // an infinite exponent is either a NaN or infinity; no need to changerightOrLeft6 ? 1'd0 : // on a right shift, the exponent was negative, it's being made to zeroxo6 - lshiftAmt6; // on a left shift, the exponent can't be decremented below zeroalways @(posedge clk)if (ce) mo7r <= mo6 >> rshiftAmt6;always @(posedge clk)if (ce) mo7l <= mo6 << lshiftAmt6;// The sticky bit is set if the bits shifted out on a right shift are set.always @*beginSt6 = 1'b0;for (n = 0; n < FMSB+5; n = n + 1)if (n <= rshiftAmt6 + 1) St6 = St6|mo6[n];endalways @(posedge clk)if (ce) St7 <= St6;// ----------------------------------------------------------------------------// Clock edge #8// - select mantissa// ----------------------------------------------------------------------------wire so;wire [EMSB:0] xo;reg [FMSB+4:0] mo;vtdl #(1) u81 (.clk(clk), .ce(ce), .a(4'd7), .d(so0), .q(so) );delay1 #(EMSB+1) u82 (.clk(clk), .ce(ce), .i(xo7), .o(xo));vtdl u83 (.clk(clk), .ce(ce), .a(4'd3), .d(inexact4), .q(inexact_o));delay1 u84 (.clk(clk), .ce(ce), .i(rightOrLeft7), .o(under_o));always @(posedge clk)if (ce) mo <= rightOrLeft7 ? mo7r|{St7,1'b0} : mo7l;assign o = {so,xo,mo[FMSB+4:1]};endmodule
