URL
https://opencores.org/ocsvn/ft816float/ft816float/trunk
Subversion Repositories ft816float
[/] [ft816float/] [trunk/] [rtl/] [verilog2/] [fpRound.sv] - Rev 49
Compare with Previous | Blame | View Log
// ============================================================================
// __
// \\__/ o\ (C) 2006-2020 Robert Finch, Waterloo
// \ __ / All rights reserved.
// \/_// robfinch<remove>@finitron.ca
// ||
//
// fpRound.sv
// - floating point rounding unit
// - parameterized width
// - IEEE 754 representation
//
//
// BSD 3-Clause License
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// ============================================================================
import fp::*;
`ifdef MIN_LATENCY
`define PIPE_ADV *
`else
`define PIPE_ADV (posedge clk)
`endif
module fpRound(clk, ce, rm, i, o);
input clk;
input ce;
input [2:0] rm; // rounding mode
input [MSB+3:0] i; // intermediate format input
output [MSB:0] o; // rounded output
//------------------------------------------------------------
// variables
wire so;
wire [EMSB:0] xo;
reg [FMSB:0] mo;
reg [EMSB:0] xo1;
reg [FMSB+3:0] mo1;
wire xInf = &i[MSB+2:FMSB+4];
wire so0 = i[MSB+3];
assign o = {so,xo,mo};
wire l = i[3];
wire g = i[2]; // guard bit: always the same bit for all operations
wire r = i[1]; // rounding bit
wire s = i[0]; // sticky bit
reg rnd;
//------------------------------------------------------------
// Clock #1
// - determine round amount (add 1 or 0)
//------------------------------------------------------------
always @`PIPE_ADV
if (ce) xo1 <= i[MSB+2:FMSB+4];
always @`PIPE_ADV
if (ce) mo1 <= i[FMSB+3:0];
wire tie = g & ~(r|s);
// Compute the round bit
// Infinities and NaNs are not rounded!
always @`PIPE_ADV
if (ce)
casez ({xInf,rm})
4'b0000: rnd <= (g & (r|s)) | (l & tie); // round to nearest ties to even
4'b0001: rnd <= 1'd0; // round to zero (truncate)
4'b0010: rnd <= g & !so0; // round towards +infinity
4'b0011: rnd <= g & so0; // round towards -infinity
4'b0100: rnd <= (g & (r|s)) | tie; // round to nearest ties away from zero
4'b1???: rnd <= 1'd0; // no rounding if exponent indicates infinite or NaN
default: rnd <= 0;
endcase
//------------------------------------------------------------
// Clock #2
// round the number, check for carry
// note: inf. exponent checked above (if the exponent was infinite already, then no rounding occurs as rnd = 0)
// note: exponent increments if there is a carry (can only increment to infinity)
//------------------------------------------------------------
reg [MSB:0] rounded2;
reg carry2;
reg rnd2;
reg dn2;
wire [EMSB:0] xo2;
wire [MSB:0] rounded1 = {xo1,mo1[FMSB+3:3],1'b0} + {rnd,1'b0}; // Add onto LSB, GRS=0
always @`PIPE_ADV
if (ce) rounded2 <= rounded1;
always @`PIPE_ADV
if (ce) carry2 <= mo1[FMSB+3] & !rounded1[FMSB+1];
always @`PIPE_ADV
if (ce) rnd2 <= rnd;
always @`PIPE_ADV
if (ce) dn2 <= !(|xo1);
assign xo2 = rounded2[MSB:FMSB+2];
//------------------------------------------------------------
// Clock #3
// - shift mantissa if required.
//------------------------------------------------------------
`ifdef MIN_LATENCY
assign so = i[MSB+3];
assign xo = xo2;
`else
delay3 #(1) u21 (.clk(clk), .ce(ce), .i(i[MSB+3]), .o(so));
delay1 #(EMSB+1) u22 (.clk(clk), .ce(ce), .i(xo2), .o(xo));
`endif
always @`PIPE_ADV
if (ce)
casez({rnd2,&xo2,carry2,dn2})
4'b0??0: mo <= mo1[FMSB+2:2]; // not rounding, not denormalized, => hide MSB
4'b0??1: mo <= mo1[FMSB+3:3]; // not rounding, denormalized
4'b1000: mo <= rounded2[FMSB :0]; // exponent didn't change, number was normalized, => hide MSB,
4'b1001: mo <= rounded2[FMSB+1:1]; // exponent didn't change, but number was denormalized, => retain MSB
4'b1010: mo <= rounded2[FMSB+1:1]; // exponent incremented (new MSB generated), number was normalized, => hide 'extra (FMSB+2)' MSB
4'b1011: mo <= rounded2[FMSB+1:1]; // exponent incremented (new MSB generated), number was denormalized, number became normalized, => hide 'extra (FMSB+2)' MSB
4'b11??: mo <= 1'd0; // number became infinite, no need to check carry etc., rnd would be zero if input was NaN or infinite
endcase
endmodule