URL
https://opencores.org/ocsvn/ft816float/ft816float/trunk
Subversion Repositories ft816float
[/] [ft816float/] [trunk/] [rtl/] [verilog2/] [fpRound.sv] - Rev 48
Go to most recent revision | Compare with Previous | Blame | View Log
// ============================================================================
// __
// \\__/ o\ (C) 2006-2020 Robert Finch, Waterloo
// \ __ / All rights reserved.
// \/_// robfinch<remove>@finitron.ca
// ||
//
// fpRound.sv
// - floating point rounding unit
// - parameterized width
// - IEEE 754 representation
//
//
// This source file is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This source file is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// ============================================================================
import fp::*;
module fpRound(clk, ce, rm, i, o);
input clk;
input ce;
input [2:0] rm; // rounding mode
input [MSB+3:0] i; // intermediate format input
output [MSB:0] o; // rounded output
//------------------------------------------------------------
// variables
wire so;
wire [EMSB:0] xo;
reg [FMSB:0] mo;
reg [EMSB:0] xo1;
reg [FMSB+3:0] mo1;
wire xInf = &i[MSB+2:FMSB+4];
wire so0 = i[MSB+3];
assign o = {so,xo,mo};
wire g = i[2]; // guard bit: always the same bit for all operations
wire r = i[1]; // rounding bit
wire s = i[0]; // sticky bit
reg rnd;
//------------------------------------------------------------
// Clock #1
// - determine round amount (add 1 or 0)
//------------------------------------------------------------
`ifdef MIN_LATENCY
always @*
`else
always @(posedge clk)
`endif
if (ce) xo1 <= i[MSB+2:FMSB+4];
`ifdef MIN_LATENCY
always @*
`else
always @(posedge clk)
`endif
if (ce) mo1 <= i[FMSB+3:0];
// Compute the round bit
// Infinities and NaNs are not rounded!
`ifdef MIN_LATENCY
always @*
`else
always @(posedge clk)
`endif
if (ce)
casez ({xInf,rm})
4'b0000: rnd <= (g & r) | (r & s); // round to nearest even
4'b0001: rnd <= 1'd0; // round to zero (truncate)
4'b0010: rnd <= (r | s) & !so0; // round towards +infinity
4'b0011: rnd <= (r | s) & so0; // round towards -infinity
4'b0100: rnd <= (r | s); // round to nearest away from zero
4'b1???: rnd <= 1'd0; // no rounding if exponent indicates infinite or NaN
default: rnd <= 0;
endcase
//------------------------------------------------------------
// Clock #2
// round the number, check for carry
// note: inf. exponent checked above (if the exponent was infinite already, then no rounding occurs as rnd = 0)
// note: exponent increments if there is a carry (can only increment to infinity)
//------------------------------------------------------------
reg [MSB:0] rounded2;
reg carry2;
reg rnd2;
reg dn2;
wire [EMSB:0] xo2;
wire [MSB:0] rounded1 = {xo1,mo1[FMSB+3:2]} + rnd;
`ifdef MIN_LATENCY
always @*
`else
always @(posedge clk)
`endif
if (ce) rounded2 <= rounded1;
`ifdef MIN_LATENCY
always @*
`else
always @(posedge clk)
`endif
if (ce) carry2 <= mo1[FMSB+3] & !rounded1[FMSB+1];
`ifdef MIN_LATENCY
always @*
`else
always @(posedge clk)
`endif
if (ce) rnd2 <= rnd;
`ifdef MIN_LATENCY
always @*
`else
always @(posedge clk)
`endif
if (ce) dn2 <= !(|xo1);
assign xo2 = rounded2[MSB:FMSB+2];
//------------------------------------------------------------
// Clock #3
// - shift mantissa if required.
//------------------------------------------------------------
`ifdef MIN_LATENCY
assign so = i[MSB+3];
assign xo = xo2;
`else
delay3 #(1) u21 (.clk(clk), .ce(ce), .i(i[MSB+3]), .o(so));
delay1 #(EMSB+1) u22 (.clk(clk), .ce(ce), .i(xo2), .o(xo));
`endif
`ifdef MIN_LATENCY
always @*
`else
always @(posedge clk)
`endif
casez({rnd2,&xo2,carry2,dn2})
4'b0??0: mo <= mo1[FMSB+2:2]; // not rounding, not denormalized, => hide MSB
4'b0??1: mo <= mo1[FMSB+3:3]; // not rounding, denormalized
4'b1000: mo <= rounded2[FMSB :0]; // exponent didn't change, number was normalized, => hide MSB,
4'b1001: mo <= rounded2[FMSB+1:1]; // exponent didn't change, but number was denormalized, => retain MSB
4'b1010: mo <= rounded2[FMSB+1:1]; // exponent incremented (new MSB generated), number was normalized, => hide 'extra (FMSB+2)' MSB
4'b1011: mo <= rounded2[FMSB+1:1]; // exponent incremented (new MSB generated), number was denormalized, number became normalized, => hide 'extra (FMSB+2)' MSB
4'b11??: mo <= 1'd0; // number became infinite, no need to check carry etc., rnd would be zero if input was NaN or infinite
endcase
endmodule
// Round and register the output
/*
module fpRoundReg(clk, ce, rm, i, o);
parameter WID = 128;
`include "fpSize.sv"
input clk;
input ce;
input [2:0] rm; // rounding mode
input [MSB+3:0] i; // expanded format input
output reg [WID-1:0] o; // rounded output
wire [WID-1:0] o1;
fpRound #(WID) u1 (.rm(rm), .i(i), .o(o1) );
always @(posedge clk)
if (ce)
o <= o1;
endmodule
*/
Go to most recent revision | Compare with Previous | Blame | View Log