URL
https://opencores.org/ocsvn/ft816float/ft816float/trunk
Subversion Repositories ft816float
[/] [ft816float/] [trunk/] [rtl/] [verilog2/] [fpRound.v] - Rev 32
Compare with Previous | Blame | View Log
// ============================================================================ // __ // \\__/ o\ (C) 2006-2019 Robert Finch, Waterloo // \ __ / All rights reserved. // \/_// robfinch<remove>@finitron.ca // || // // fpRound.v // - floating point rounding unit // - parameterized width // - IEEE 754 representation // // // This source file is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published // by the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This source file is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // // ============================================================================ `include "fpConfig.sv" module fpRound(clk, ce, rm, i, o); parameter FPWID = 128; `include "fpSize.sv" input clk; input ce; input [2:0] rm; // rounding mode input [MSB+3:0] i; // intermediate format input output [MSB:0] o; // rounded output //------------------------------------------------------------ // variables wire so; wire [EMSB:0] xo; reg [FMSB:0] mo; reg [EMSB:0] xo1; reg [FMSB+3:0] mo1; wire xInf = &i[MSB+2:FMSB+4]; wire so0 = i[MSB+3]; assign o = {so,xo,mo}; wire g = i[2]; // guard bit: always the same bit for all operations wire r = i[1]; // rounding bit wire s = i[0]; // sticky bit reg rnd; //------------------------------------------------------------ // Clock #1 // - determine round amount (add 1 or 0) //------------------------------------------------------------ `ifdef MIN_LATENCY always @* `else always @(posedge clk) `endif if (ce) xo1 <= i[MSB+2:FMSB+4]; `ifdef MIN_LATENCY always @* `else always @(posedge clk) `endif if (ce) mo1 <= i[FMSB+3:0]; // Compute the round bit // Infinities and NaNs are not rounded! `ifdef MIN_LATENCY always @* `else always @(posedge clk) `endif if (ce) casez ({xInf,rm}) 4'b0000: rnd <= (g & r) | (r & s); // round to nearest even 4'b0001: rnd <= 1'd0; // round to zero (truncate) 4'b0010: rnd <= (r | s) & !so0; // round towards +infinity 4'b0011: rnd <= (r | s) & so0; // round towards -infinity 4'b0100: rnd <= (r | s); // round to nearest away from zero 4'b1???: rnd <= 1'd0; // no rounding if exponent indicates infinite or NaN default: rnd <= 0; endcase //------------------------------------------------------------ // Clock #2 // round the number, check for carry // note: inf. exponent checked above (if the exponent was infinite already, then no rounding occurs as rnd = 0) // note: exponent increments if there is a carry (can only increment to infinity) //------------------------------------------------------------ reg [MSB:0] rounded2; reg carry2; reg rnd2; reg dn2; wire [EMSB:0] xo2; wire [MSB:0] rounded1 = {xo1,mo1[FMSB+3:2]} + rnd; `ifdef MIN_LATENCY always @* `else always @(posedge clk) `endif if (ce) rounded2 <= rounded1; `ifdef MIN_LATENCY always @* `else always @(posedge clk) `endif if (ce) carry2 <= mo1[FMSB+3] & !rounded1[FMSB+1]; `ifdef MIN_LATENCY always @* `else always @(posedge clk) `endif if (ce) rnd2 <= rnd; `ifdef MIN_LATENCY always @* `else always @(posedge clk) `endif if (ce) dn2 <= !(|xo1); assign xo2 = rounded2[MSB:FMSB+2]; //------------------------------------------------------------ // Clock #3 // - shift mantissa if required. //------------------------------------------------------------ `ifdef MIN_LATENCY assign so = i[MSB+3]; assign xo = xo2; `else delay3 #(1) u21 (.clk(clk), .ce(ce), .i(i[MSB+3]), .o(so)); delay1 #(EMSB+1) u22 (.clk(clk), .ce(ce), .i(xo2), .o(xo)); `endif `ifdef MIN_LATENCY always @* `else always @(posedge clk) `endif casez({rnd2,&xo2,carry2,dn2}) 4'b0??0: mo <= mo1[FMSB+2:2]; // not rounding, not denormalized, => hide MSB 4'b0??1: mo <= mo1[FMSB+3:3]; // not rounding, denormalized 4'b1000: mo <= rounded2[FMSB :0]; // exponent didn't change, number was normalized, => hide MSB, 4'b1001: mo <= rounded2[FMSB+1:1]; // exponent didn't change, but number was denormalized, => retain MSB 4'b1010: mo <= rounded2[FMSB+1:1]; // exponent incremented (new MSB generated), number was normalized, => hide 'extra (FMSB+2)' MSB 4'b1011: mo <= rounded2[FMSB+1:1]; // exponent incremented (new MSB generated), number was denormalized, number became normalized, => hide 'extra (FMSB+2)' MSB 4'b11??: mo <= 1'd0; // number became infinite, no need to check carry etc., rnd would be zero if input was NaN or infinite endcase endmodule // Round and register the output /* module fpRoundReg(clk, ce, rm, i, o); parameter FPWID = 128; `include "fpSize.sv" input clk; input ce; input [2:0] rm; // rounding mode input [MSB+3:0] i; // expanded format input output reg [FPWID-1:0] o; // rounded output wire [FPWID-1:0] o1; fpRound #(FPWID) u1 (.rm(rm), .i(i), .o(o1) ); always @(posedge clk) if (ce) o <= o1; endmodule */