URL
https://opencores.org/ocsvn/ft816float/ft816float/trunk
Subversion Repositories ft816float
[/] [ft816float/] [trunk/] [rtl/] [verilog2/] [fpSqrt.sv] - Rev 83
Go to most recent revision | Compare with Previous | Blame | View Log
// ============================================================================
// __
// \\__/ o\ (C) 2018-2020 Robert Finch, Waterloo
// \ __ / All rights reserved.
// \/_// robfinch<remove>@finitron.ca
// ||
//
// fpSqrt.v
// - floating point square root
// - parameterized width
// - IEEE 754 representation
//
//
// This source file is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This source file is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Floating Point Multiplier / Divider
//
// ============================================================================
import fp::*;
module fpSqrt(rst, clk, ce, ld, a, o, done, sqrinf, sqrneg);
localparam pShiftAmt =
FPWID==80 ? 48 :
FPWID==64 ? 36 :
FPWID==32 ? 7 : (FMSB+1-16);
input rst;
input clk;
input ce;
input ld;
input [MSB:0] a;
output reg [EX:0] o;
output done;
output sqrinf;
output sqrneg;
// registered outputs
reg sign_exe;
reg inf;
reg overflow;
reg underflow;
wire so;
wire [EMSB:0] xo;
wire [FX:0] mo;
// constants
wire [EMSB:0] infXp = {EMSB+1{1'b1}}; // infinite / NaN - all ones
// The following is the value for an exponent of zero, with the offset
// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.
wire [EMSB:0] bias = {1'b0,{EMSB{1'b1}}}; //2^0 exponent
// The following is a template for a quiet nan. (MSB=1)
wire [FMSB:0] qNaN = {1'b1,{FMSB{1'b0}}};
// variables
wire [EMSB+2:0] ex1; // sum of exponents
wire [FX:0] sqrto;
// Operands
wire sa; // sign bit
wire [EMSB:0] xa; // exponent bits
wire [FMSB+1:0] fracta;
wire a_dn; // a/b is denormalized
wire az;
wire aInf;
wire aNan;
wire done1;
wire [7:0] lzcnt;
wire [MSB:0] aa;
// -----------------------------------------------------------
// - decode the input operand
// - derive basic information
// - calculate exponent
// - calculate fraction
// -----------------------------------------------------------
fpDecompReg u1
(
.clk(clk),
.ce(ce),
.i(a),
.o(aa),
.sgn(sa),
.exp(xa),
.fract(fracta),
.xz(a_dn),
.vz(az),
.inf(aInf),
.nan(aNan)
);
assign ex1 = xa + 8'd1;
assign so = 1'b0; // square root of positive numbers only
assign xo = (ex1 >> 1) + (bias >> 1); // divide by 2 cuts the bias in half, so 1/2 of it is added back in.
assign mo = aNan ? {1'b1,aa[FMSB:0],{FMSB+1{1'b0}}} : (sqrto << pShiftAmt);
assign sqrinf = aInf;
assign sqrneg = !az & so;
wire [FMSB+2:0] fracta1 = ex1[0] ? {1'b0,fracta} << 1 : {2'b0,fracta};
wire ldd;
delay1 #(1) u3 (.clk(clk), .ce(ce), .i(ld), .o(ldd));
isqrt #(FX+1) u2
(
.rst(rst),
.clk(clk),
.ce(ce),
.ld(ldd),
.a({1'b0,fracta1,{FMSB+1{1'b0}}}),
.o(sqrto),
.done(done)
);
always @*
casez({aNan,sqrinf,sqrneg})
3'b1??: o <= {sa,xa,mo};
3'b01?: o <= {sa,1'b1,qNaN|`QSQRTINF,{FMSB+1{1'b0}}};
3'b001: o <= {sa,1'b1,qNaN|`QSQRTNEG,{FMSB+1{1'b0}}};
default: o <= {so,xo,mo};
endcase
endmodule
module fpSqrtnr(rst, clk, ce, ld, a, o, rm, done, inf, sqrinf, sqrneg);
input rst;
input clk;
input ce;
input ld;
input [MSB:0] a;
output [MSB:0] o;
input [2:0] rm;
output done;
output inf;
output sqrinf;
output sqrneg;
wire [EX:0] o1;
wire inf1;
wire [MSB+3:0] fpn0;
wire done1;
fpSqrt #(FPWID) u1 (rst, clk, ce, ld, a, o1, done1, sqrinf, sqrneg);
fpNormalize #(FPWID) u2(.clk(clk), .ce(ce), .under_i(1'b0), .i(o1), .o(fpn0) );
fpRound #(FPWID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
delay2 #(1) u5(.clk(clk), .ce(ce), .i(inf1), .o(inf));
delay2 #(1) u8(.clk(clk), .ce(ce), .i(done1), .o(done));
endmodule
Go to most recent revision | Compare with Previous | Blame | View Log