OpenCores
URL https://opencores.org/ocsvn/gecko3/gecko3/trunk

Subversion Repositories gecko3

[/] [gecko3/] [trunk/] [GECKO3COM/] [gecko3com-ip/] [core/] [gpif_com_fsm.vhd] - Rev 19

Go to most recent revision | Compare with Previous | Blame | View Log

--  GECKO3COM IP Core
--
--  Copyright (C) 2009 by
--   ___    ___   _   _
--  (  _ \ (  __)( ) ( )
--  | (_) )| (   | |_| |   Bern University of Applied Sciences
--  |  _ < |  _) |  _  |   School of Engineering and
--  | (_) )| |   | | | |   Information Technology
--  (____/ (_)   (_) (_)
--
--  This program is free software: you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation, either version 3 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details. 
--  You should have received a copy of the GNU General Public License
--  along with this program.  If not, see <http://www.gnu.org/licenses/>.
--
--  URL to the project description: 
--    http://labs.ti.bfh.ch/gecko/wiki/systems/gecko3com/start
-------------------------------------------------------------------------------
--
--  Author:  Andreas Habegger, Christoph Zimmermann
--  Date of creation: 8. April 2009
--  Description:
--      FSM that controls the interface between the EZ-USB (and it's internal
--      GPIF, General Purpose Interface) and our FPGA. The interface is
--      synchronous, where the GPIF provides the clock. This FSM is synchronous
--      to the GPIF clock, also this side of the FIFO's.
--
--    You can find more detailed information how the interface works in the
--    ../Doc folder.
--
--  Target Devices:     general
--  Tool versions:      Xilinx ISE 11.1, XST
--  Dependencies:
--
-------------------------------------------------------------------------------
 
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
 
library work;
use work.GECKO3COM_defines.all;
 
entity gpif_com_fsm is
  port (
    i_nReset        : in  std_logic;
    i_IFCLK         : in  std_logic;  -- GPIF CLK (GPIF is Master and provides the clock)
    i_WRU           : in  std_logic;    -- write from GPIF
    i_RDYU          : in  std_logic;    -- GPIF is ready
    i_U2X_FULL      : in  std_logic;
    i_U2X_AM_FULL   : in  std_logic;    -- signals for IN FIFO
    i_X2U_AM_EMPTY  : in  std_logic;
    i_X2U_EMPTY     : in  std_logic;    -- signals for OUT FIFO
    o_bus_trans_dir : out std_logic;
    o_U2X_WR_EN     : out std_logic;    -- signals for IN FIFO
    o_X2U_RD_EN     : out std_logic;    -- signals for OUT FIFO
    o_FIFOrst       : out std_logic;
    o_WRX           : out std_logic;    -- To write to GPIF
    o_RDYX          : out std_logic;    -- Core is ready
    o_ABORT         : out std_logic;  -- abort condition detected. we have to flush the data
    o_RX            : out std_logic;
    o_TX            : out std_logic     --
    );
 
end gpif_com_fsm;
 
 
 
architecture fsm of gpif_com_fsm is
 
  -- XST specific synthesize attributes
  attribute safe_implementation: string;
  attribute safe_recovery_state: string;
 
 
  -----------------------------------------------------------------------------
  -- FSM
  -----------------------------------------------------------------------------
 
  type   t_busAccess is (readFromGPIF, writeToGPIF);
  signal s_bus_trans_dir : t_busAccess;
 
 
  type t_fsmState is (rst, idle,        -- controll states
                      inRQ, inACK, inWait, inTrans, inThrot,
                      inThrotBreak,inThrotBreak2, inThrotEnd, endInTrans,  -- in com states
                      outRQ, outTrans, outWait, endOutTrans);  -- out com states
 
 
 
  signal pr_state, nx_state : t_fsmState;
  -- XST specific synthesize attributes
  attribute safe_recovery_state of pr_state : signal is "idle";
  attribute safe_implementation of pr_state : signal is "yes";
 
 
 
  -- interconection signals
  signal s_FIFOrst, s_RDYX, s_WRX, s_ABORT : std_logic;
 
  -- USB to Xilinx (U2X)
  signal s_U2X_WR_EN : std_logic;
 
  -- Xilinx to USB (X2U)
  signal s_X2U_RD_EN : std_logic;
 
begin
 
 
 
  o_FIFOrst       <= s_FIFOrst;
  o_X2U_RD_EN     <= s_X2U_RD_EN;
  o_WRX           <= s_WRX;
  o_RDYX          <= s_RDYX;
  o_U2X_WR_EN     <= s_U2X_WR_EN;
  o_bus_trans_dir <= '1' when s_bus_trans_dir = writeToGPIF else '0';
  o_ABORT         <= s_ABORT;
 
 
  -----------------------------------------------------------------------------
  -- FSM GPIF
  -----------------------------------------------------------------------------
 
  -- state reg
  action : process(i_IFCLK, i_nReset)
  begin
 
    if i_nReset = '0' then
      pr_state <= rst;
 
    elsif rising_edge(i_IFCLK) then
        pr_state <= nx_state;
    end if;
  end process action;
 
 
  -- comb logic
  transaction : process(pr_state, i_WRU, i_RDYU, i_U2X_FULL,
                        i_U2X_AM_FULL, i_X2U_EMPTY)
  begin  -- process transaction
 
    -- default signal values to avoid latches:
    s_FIFOrst       <= '0';
    s_bus_trans_dir <= readFromGPIF;
    s_U2X_WR_EN     <= '0';
    s_X2U_RD_EN     <= '0';
    nx_state        <= idle;
    s_WRX           <= '0';
    s_RDYX          <= '0';
    s_ABORT         <= '0';
    o_RX            <= '0';
    o_TX            <= '0';
 
    case pr_state is
      -- controll
 
      when rst =>
        -- output signal values:
        s_FIFOrst   <= '1';
        s_WRX       <= '0';
        s_RDYX      <= '0';
        s_U2X_WR_EN <= '0';
        s_X2U_RD_EN <= '0';
        s_ABORT     <= '1';
        o_RX        <= '0';
        o_TX        <= '0';
 
        s_bus_trans_dir <= readFromGPIF;
 
        -- state decisions
        if i_WRU = '1' and i_RDYU = '1' then
          nx_state <= rst;
        else
          nx_state <= idle;
        end if;
 
      when idle =>
        -- output signal values:
        s_FIFOrst       <= '0';
        s_WRX           <= '0';
        s_RDYX          <= '0';
        s_U2X_WR_EN     <= '0';
        s_X2U_RD_EN     <= '0';
        s_bus_trans_dir <= readFromGPIF;
 
        -- state decisions
        if i_WRU = '1' and i_RDYU = '1' then
          nx_state <= rst;
        elsif i_WRU = '1' and i_RDYU = '0' then
          nx_state <= inRQ;
        elsif i_WRU = '0' and i_X2U_EMPTY = '0' then
          nx_state <= outRQ;
        else
          nx_state <= idle;
        end if;
 
        -- in trans
      when inRQ =>
        -- output signal values:
        s_WRX  <= '0';
        s_RDYX <= '0';
        s_U2X_WR_EN <= '0';
        o_RX        <= '0';
 
        -- state decisions
        if i_WRU = '1' and i_RDYU = '1' then
          nx_state <= rst;
        elsif i_U2X_FULL = '0' then
          nx_state <= inACK;
        else
          nx_state <= idle;
        end if;
 
      when inACK =>
        -- output signal values:
        s_WRX       <= '0';
        s_RDYX      <= '1';
        s_U2X_WR_EN <= '0';
        o_RX        <= '1';
 
        -- state decisions
        if i_WRU = '1' and i_RDYU = '1' then
          nx_state <= rst;
        elsif i_WRU = '1' then
          --nx_state <= inTrans;
          nx_state <= inWait;
        else
          nx_state <= endInTrans;
        end if;
 
        when inWait =>
        -- output signal values:
        s_WRX       <= '0';
        s_RDYX      <= '1';
        s_U2X_WR_EN <= '0';
        o_RX        <= '1';
 
        -- state decisions
        nx_state <= inTrans;
 
      when inTrans =>
        -- output signal values:
        s_WRX       <= '0';
        s_RDYX      <= '1';
        s_U2X_WR_EN <= '1';
        o_RX        <= '1';
 
        -- state decisions
        if i_WRU = '1' and i_RDYU = '1' then
          nx_state <= rst;
        elsif i_WRU = '0' then
          nx_state <= endInTrans;
        elsif i_U2X_FULL = '1' then
          nx_state <= inThrot;
        else
          nx_state <= inTrans;
        end if;
 
      when inThrot =>
        -- output signal values:
        s_WRX       <= '0';
        s_RDYX      <= '0';
        s_U2X_WR_EN <= '0';
        o_RX        <= '1';
 
        -- state decisions
        if i_WRU = '1' and i_RDYU = '1' then
          nx_state <= rst;
        elsif i_U2X_FULL = '0' then
          nx_state <= inThrotBreak;
          --nx_state <= inACK;
        elsif i_WRU = '0' then
          nx_state <= endInTrans;
        else
          nx_state <= inThrot;
        end if;
 
      when inThrotBreak =>
        -- this is a one clock delay to help the fx2 to see the RDYX signal.
 
        -- output signal values:
        s_WRX       <= '0';
        s_RDYX      <= '1';
        s_U2X_WR_EN <= '0';
        o_RX        <= '1';
 
        -- state decisions 
        --nx_state <= inThrotBreak2;
        nx_state <= inThrotEnd;
 
      --when inThrotBreak2 =>
      --  -- this is a one clock delay to help the fx2 to see the RDYX signal.
 
      --  -- output signal values:
      --  s_WRX       <= '0';
      --  s_RDYX      <= '1';
      --  s_U2X_WR_EN <= '0';
      --  o_RX        <= '1';
 
      --  -- state decisions 
      --  nx_state <= inThrotEnd;
 
      when inThrotEnd =>
        -- this is a one clock delay to help the fx2 to see the RDYX signal.
 
        -- output signal values:
        s_WRX       <= '0';
        s_RDYX      <= '1';
        s_U2X_WR_EN <= '0';
        o_RX        <= '1';
 
        -- state decisions 
        nx_state <= inTrans;
 
      when endInTrans =>
        -- output signal values:
        s_WRX       <= '0';
        s_RDYX      <= '0';
        s_U2X_WR_EN <= '0';
        o_RX        <= '0';
 
        -- state decisions
        nx_state <= idle;
 
 
        -- out trans
      when outRQ =>
        -- output signal values:
        s_WRX  <= '1';
        s_RDYX <= '0';
 
        -- state decisions
        if i_WRU = '1' and i_RDYU = '1' then
          nx_state <= rst;
        elsif i_WRU = '1' and i_RDYU = '0' then
          nx_state <= inRQ;
        elsif i_WRU = '0' and i_RDYU = '0' then  -- vervollständigt, wenn ez-usb noch beschäfigt mit altem transfer
          --s_X2U_RD_EN <= '1';
          nx_state    <= outTrans;
--            s_bus_trans_dir <= writeToGPIF;
        else
          nx_state <= outRQ;
        end if;
 
 
      when outTrans =>
        -- output signal values:
        s_WRX           <= '1';
        s_RDYX          <= '0';
        s_X2U_RD_EN     <= '1';
        s_bus_trans_dir <= writeToGPIF;
        o_TX            <= '1';
 
        -- state decisions
        if i_WRU = '1' and i_RDYU = '1' then
          nx_state        <= rst;
        elsif i_X2U_EMPTY = '1' then
          nx_state <= endOutTrans;
        elsif i_WRU = '0' and i_RDYU = '1' then
          nx_state <= outTrans;
        else
          --s_X2U_RD_EN <= '0';           -- to realise a wait case
          nx_state    <= outWait;
        end if;
 
      when outWait =>
        -- output signal values:
        s_WRX       <= '1';
        s_RDYX      <= '0';
        s_X2U_RD_EN <= '0';
        o_TX        <= '1';
        s_bus_trans_dir <= writeToGPIF;
 
        -- state decisions
        if i_WRU = '1' and i_RDYU = '1' then
          nx_state <= rst;
        elsif i_WRU = '0' and i_RDYU = '1' then
          nx_state <= outTrans;
        else
          nx_state <= outWait;
        end if;
 
      when endOutTrans =>
        -- output signal values:
        s_RDYX          <= '0';
        s_WRX           <= '1';  -- nötig um letzte 16bit an ez-usb zu schreiben
        s_X2U_RD_EN     <= '1';  -- nötig da empyte flag schon beim ersten fifo zugriff auftaucht, zweite 16bit müssen noch gelesen werden
        s_bus_trans_dir <= writeToGPIF;
 
        -- state decisions
        nx_state        <= idle;
 
        -- error case
      when others =>
        nx_state <= idle;
    end case;
 
  end process transaction;
 
end fsm;
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.