URL
https://opencores.org/ocsvn/generic_fifos/generic_fifos/trunk
Subversion Repositories generic_fifos
[/] [generic_fifos/] [trunk/] [rtl/] [verilog/] [generic_fifo_sc_a.v] - Rev 7
Compare with Previous | Blame | View Log
///////////////////////////////////////////////////////////////////// //// //// //// Universal FIFO Single Clock //// //// //// //// //// //// Author: Rudolf Usselmann //// //// rudi@asics.ws //// //// //// //// //// //// D/L from: http://www.opencores.org/cores/generic_fifos/ //// //// //// ///////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2000-2002 Rudolf Usselmann //// //// www.asics.ws //// //// rudi@asics.ws //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer.//// //// //// //// THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY //// //// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED //// //// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS //// //// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR //// //// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, //// //// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES //// //// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE //// //// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR //// //// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF //// //// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT //// //// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT //// //// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE //// //// POSSIBILITY OF SUCH DAMAGE. //// //// //// ///////////////////////////////////////////////////////////////////// // CVS Log // // $Id: generic_fifo_sc_a.v,v 1.1.1.1 2002-09-25 05:42:06 rudi Exp $ // // $Date: 2002-09-25 05:42:06 $ // $Revision: 1.1.1.1 $ // $Author: rudi $ // $Locker: $ // $State: Exp $ // // Change History: // $Log: not supported by cvs2svn $ // // // // // // // // // // `include "timescale.v" /* Description =========== I/Os ---- rst low active, either sync. or async. master reset (see below how to select) clr synchronous clear (just like reset but always synchronous), high active re read enable, synchronous, high active we read enable, synchronous, high active din Data Input dout Data Output full Indicates the FIFO is full (combinatorial output) full_r same as above, but registered output (see note below) empty Indicates the FIFO is empty empty_r same as above, but registered output (see note below) full_n Indicates if the FIFO has space for N entries (combinatorial output) full_n_r same as above, but registered output (see note below) empty_n Indicates the FIFO has at least N entries (combinatorial output) empty_n_r same as above, but registered output (see note below) level indicates the FIFO level: 2'b00 0-25% full 2'b01 25-50% full 2'b10 50-75% full 2'b11 %75-100% full combinatorial vs. registered status outputs ------------------------------------------- Both the combinatorial and registered status outputs have exactly the same synchronous timing. Meaning they are being asserted immediately at the clock edge after the last read or write. The combinatorial outputs however, pass through several levels of logic before they are output. The registered status outputs are direct outputs of a flip-flop. The reason both are provided, is that the registered outputs require quite a bit of additional logic inside the FIFO. If you can meet timing of your device with the combinatorial outputs, use them ! The FIFO will be smaller. If the status signals are in the critical pass, use the registered outputs, they have a much smaller output delay (actually only Tcq). Parameters ---------- The FIFO takes 3 parameters: dw Data bus width aw Address bus width (Determines the FIFO size by evaluating 2^aw) n N is a second status threshold constant for full_n and empty_n If you have no need for the second status threshold, do not connect the outputs and the logic should be removed by your synthesis tool. Synthesis Results ----------------- In a Spartan 2e a 8 bit wide, 8 entries deep FIFO, takes 85 LUTs and runs at about 116 MHz (IO insertion disabled). The registered status outputs are valid after 2.1NS, the combinatorial once take out to 6.5 NS to be available. Misc ---- This design assumes you will do appropriate status checking externally. IMPORTANT ! writing while the FIFO is full or reading while the FIFO is empty will place the FIFO in an undefined state. */ // Selecting Sync. or Async Reset // ------------------------------ // Uncomment one of the two lines below. The first line for // synchronous reset, the second for asynchronous reset `define SC_FIFO_ASYNC_RESET // Uncomment for Syncr. reset //`define SC_FIFO_ASYNC_RESET or negedge rst // Uncomment for Async. reset module generic_fifo_sc_a(clk, rst, clr, din, we, dout, re, full, empty, full_r, empty_r, full_n, empty_n, full_n_r, empty_n_r, level); parameter dw=8; parameter aw=8; parameter n=32; parameter max_size = 1<<aw; input clk, rst, clr; input [dw-1:0] din; input we; output [dw-1:0] dout; input re; output full, full_r; output empty, empty_r; output full_n, full_n_r; output empty_n, empty_n_r; output [1:0] level; //////////////////////////////////////////////////////////////////// // // Local Wires // reg [aw-1:0] wp; wire [aw-1:0] wp_pl1; wire [aw-1:0] wp_pl2; reg [aw-1:0] rp; wire [aw-1:0] rp_pl1; reg full_r; reg empty_r; reg gb; reg gb2; reg [aw:0] cnt; wire full_n, empty_n; reg full_n_r, empty_n_r; //////////////////////////////////////////////////////////////////// // // Memory Block // generic_dpram #(aw,dw) u0( .rclk( clk ), .rrst( !rst ), .rce( 1'b1 ), .oe( 1'b1 ), .raddr( rp ), .do( dout ), .wclk( clk ), .wrst( !rst ), .wce( 1'b1 ), .we( we ), .waddr( wp ), .di( din ) ); //////////////////////////////////////////////////////////////////// // // Misc Logic // always @(posedge clk `SC_FIFO_ASYNC_RESET) if(!rst) wp <= #1 {aw{1'b0}}; else if(clr) wp <= #1 {aw{1'b0}}; else if(we) wp <= #1 wp_pl1; assign wp_pl1 = wp + { {aw-1{1'b0}}, 1'b1}; assign wp_pl2 = wp + { {aw-2{1'b0}}, 2'b10}; always @(posedge clk `SC_FIFO_ASYNC_RESET) if(!rst) rp <= #1 {aw{1'b0}}; else if(clr) rp <= #1 {aw{1'b0}}; else if(re) rp <= #1 rp_pl1; assign rp_pl1 = rp + { {aw-1{1'b0}}, 1'b1}; //////////////////////////////////////////////////////////////////// // // Combinatorial Full & Empty Flags // assign empty = ((wp == rp) & !gb); assign full = ((wp == rp) & gb); // Guard Bit ... always @(posedge clk `SC_FIFO_ASYNC_RESET) if(!rst) gb <= #1 1'b0; else if(clr) gb <= #1 1'b0; else if((wp_pl1 == rp) & we) gb <= #1 1'b1; else if(re) gb <= #1 1'b0; //////////////////////////////////////////////////////////////////// // // Registered Full & Empty Flags // // Guard Bit ... always @(posedge clk `SC_FIFO_ASYNC_RESET) if(!rst) gb2 <= #1 1'b0; else if(clr) gb2 <= #1 1'b0; else if((wp_pl2 == rp) & we) gb2 <= #1 1'b1; else if((wp != rp) & re) gb2 <= #1 1'b0; always @(posedge clk `SC_FIFO_ASYNC_RESET) if(!rst) full_r <= #1 1'b0; else if(clr) full_r <= #1 1'b0; else if(we & ((wp_pl1 == rp) & gb2) & !re) full_r <= #1 1'b1; else if(re & ((wp_pl1 != rp) | !gb2) & !we) full_r <= #1 1'b0; always @(posedge clk `SC_FIFO_ASYNC_RESET) if(!rst) empty_r <= #1 1'b1; else if(clr) empty_r <= #1 1'b1; else if(we & ((wp != rp_pl1) | gb2) & !re) empty_r <= #1 1'b0; else if(re & ((wp == rp_pl1) & !gb2) & !we) empty_r <= #1 1'b1; //////////////////////////////////////////////////////////////////// // // Combinatorial Full_n & Empty_n Flags // assign empty_n = cnt < n; assign full_n = !(cnt < (max_size-n+1)); assign level = {2{cnt[aw]}} | cnt[aw-1:aw-2]; // N entries status always @(posedge clk `SC_FIFO_ASYNC_RESET) if(!rst) cnt <= #1 {aw+1{1'b0}}; else if(clr) cnt <= #1 {aw+1{1'b0}}; else if( re & !we) cnt <= #1 cnt + { {aw{1'b1}}, 1'b1}; else if(!re & we) cnt <= #1 cnt + { {aw{1'b0}}, 1'b1}; //////////////////////////////////////////////////////////////////// // // Registered Full_n & Empty_n Flags // always @(posedge clk `SC_FIFO_ASYNC_RESET) if(!rst) empty_n_r <= #1 1'b1; else if(clr) empty_n_r <= #1 1'b1; else if(we & (cnt >= (n-1) ) & !re) empty_n_r <= #1 1'b0; else if(re & (cnt <= n ) & !we) empty_n_r <= #1 1'b1; always @(posedge clk `SC_FIFO_ASYNC_RESET) if(!rst) full_n_r <= #1 1'b0; else if(clr) full_n_r <= #1 1'b0; else if(we & (cnt >= (max_size-n) ) & !re) full_n_r <= #1 1'b1; else if(re & (cnt <= (max_size-n+1)) & !we) full_n_r <= #1 1'b0; //////////////////////////////////////////////////////////////////// // // Sanity Check // // synopsys translate_off always @(posedge clk) if(we & full) $display("%m WARNING: Writing while fifo is FULL (%t)",$time); always @(posedge clk) if(re & empty) $display("%m WARNING: Reading while fifo is EMPTY (%t)",$time); // synopsys translate_on endmodule