URL
https://opencores.org/ocsvn/hf-risc/hf-risc/trunk
Subversion Repositories hf-risc
[/] [hf-risc/] [trunk/] [hf-riscv/] [core_rv32i/] [datapath.vhd] - Rev 18
Compare with Previous | Blame | View Log
library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all; entity datapath is port ( clock: in std_logic; reset: in std_logic; stall: in std_logic; irq_vector: in std_logic_vector(31 downto 0); irq: in std_logic; irq_ack: out std_logic; exception: out std_logic; address: out std_logic_vector(31 downto 0); data_in: in std_logic_vector(31 downto 0); data_out: out std_logic_vector(31 downto 0); data_w: out std_logic_vector(3 downto 0); data_access: out std_logic ); end datapath; architecture arch_datapath of datapath is -- datapath signals signal inst_in_s, data_in_s, pc, pc_last, pc_last2, pc_plus4, pc_next, result, branch, ext32b, ext32h, alu_src1, alu_src2: std_logic_vector(31 downto 0); signal ext32: std_logic_vector(31 downto 12); signal opcode, funct7: std_logic_vector(6 downto 0); signal funct3: std_logic_vector(2 downto 0); signal read_reg1, read_reg2, write_reg, rs1, rs2, rd: std_logic_vector(4 downto 0); signal write_data, read_data1, read_data2: std_logic_vector(31 downto 0); signal imm_i, imm_s, imm_sb, imm_uj, branch_src1, branch_src2: std_logic_vector(31 downto 0); signal imm_u: std_logic_vector(31 downto 12); signal wreg, zero, less_than, branch_taken, jump_taken, mwait, stall_reg: std_logic; signal irq_ack_s, irq_ack_s_dly, bds, data_access_s, data_access_s_dly: std_logic; -- control signals signal reg_write_ctl, alu_src1_ctl, sig_read_ctl, reg_to_mem, mem_to_reg, except: std_logic; signal jump_ctl, mem_write_ctl, mem_read_ctl: std_logic_vector(1 downto 0); signal alu_src2_ctl, branch_ctl: std_logic_vector(2 downto 0); signal alu_op_ctl: std_logic_vector(3 downto 0); signal rs1_r, rs2_r, rd_r: std_logic_vector(4 downto 0); signal imm_i_r, imm_s_r, imm_sb_r, imm_uj_r: std_logic_vector(31 downto 0); signal imm_u_r: std_logic_vector(31 downto 12); signal reg_write_ctl_r, alu_src1_ctl_r, sig_read_ctl_r, reg_to_mem_r, mem_to_reg_r, mem_to_reg_r_dly: std_logic; signal jump_ctl_r, mem_write_ctl_r, mem_read_ctl_r: std_logic_vector(1 downto 0); signal alu_src2_ctl_r, branch_ctl_r: std_logic_vector(2 downto 0); signal alu_op_ctl_r: std_logic_vector(3 downto 0); begin -- -- FETCH STAGE -- -- 1st stage, instruction memory access, PC update, interrupt acknowledge logic -- program counter logic process(clock, reset, reg_to_mem_r, mem_to_reg_r, mwait, stall) begin if reset = '1' then pc <= (others => '0'); pc_last <= (others => '0'); pc_last2 <= (others => '0'); elsif clock'event and clock = '1' then if stall = '0' then if mwait = '0' then pc <= pc_next; pc_last <= pc; pc_last2 <= pc_last; else if (reg_to_mem_r = '1' or mem_to_reg_r = '1' or except = '1') and bds = '0' then pc <= pc_last; end if; end if; end if; end if; end process; pc_plus4 <= pc + 4; pc_next <= irq_vector when (irq = '1' and irq_ack_s = '1') or except = '1' else branch when branch_taken = '1' or jump_taken = '1' else pc_plus4; -- interrupt acknowledge logic irq_ack_s <= '1' when irq = '1' and bds = '0' and branch_taken = '0' and jump_taken = '0' and reg_to_mem_r = '0' and mem_to_reg_r = '0' else '0'; irq_ack <= irq_ack_s_dly; exception <= '1' when except = '1' else '0'; process(clock, reset, irq, irq_ack_s, mem_to_reg_r, mwait, stall) begin if reset = '1' then irq_ack_s_dly <= '0'; bds <= '0'; mem_to_reg_r_dly <= '0'; stall_reg <= '0'; data_access_s_dly <= '0'; elsif clock'event and clock = '1' then stall_reg <= stall; if stall = '0' then mem_to_reg_r_dly <= mem_to_reg_r; data_access_s_dly <= data_access_s; if mwait = '0' then irq_ack_s_dly <= irq_ack_s; if branch_taken = '1' or jump_taken = '1' then bds <= '1'; else bds <= '0'; end if; end if; end if; end if; end process; -- -- DECODE STAGE -- -- 2nd stage, instruction decode, control unit operation, pipeline bubble insertion logic on load/store and branches -- instruction decode inst_in_s <= data_in(7 downto 0) & data_in(15 downto 8) & data_in(23 downto 16) & data_in(31 downto 24); opcode <= inst_in_s(6 downto 0); funct3 <= inst_in_s(14 downto 12); funct7 <= inst_in_s(31 downto 25); rd <= inst_in_s(11 downto 7); rs1 <= inst_in_s(19 downto 15); rs2 <= inst_in_s(24 downto 20); imm_i <= ext32(31 downto 12) & inst_in_s(31 downto 20); imm_s <= ext32(31 downto 12) & inst_in_s(31 downto 25) & inst_in_s(11 downto 7); imm_sb <= ext32(31 downto 13) & inst_in_s(31) & inst_in_s(7) & inst_in_s(30 downto 25) & inst_in_s(11 downto 8) & '0'; imm_u <= inst_in_s(31 downto 12); imm_uj <= ext32(31 downto 21) & inst_in_s(31) & inst_in_s(19 downto 12) & inst_in_s(20) & inst_in_s(30 downto 21) & '0'; ext32 <= (others => '1') when inst_in_s(31) = '1' else (others => '0'); -- control unit control_unit: entity work.control port map( opcode => opcode, funct3 => funct3, funct7 => funct7, reg_write => reg_write_ctl, alu_src1 => alu_src1_ctl, alu_src2 => alu_src2_ctl, alu_op => alu_op_ctl, jump => jump_ctl, branch => branch_ctl, mem_write => mem_write_ctl, mem_read => mem_read_ctl, sig_read => sig_read_ctl ); reg_to_mem <= '1' when mem_write_ctl /= "00" else '0'; mem_to_reg <= '1' when mem_read_ctl /= "00" else '0'; process(clock, reset, irq_ack_s, bds, mwait, stall) begin if reset = '1' then rd_r <= (others => '0'); rs1_r <= (others => '0'); rs2_r <= (others => '0'); imm_i_r <= (others => '0'); imm_s_r <= (others => '0'); imm_sb_r <= (others => '0'); imm_u_r <= (others => '0'); imm_uj_r <= (others => '0'); reg_write_ctl_r <= '0'; alu_src1_ctl_r <= '0'; alu_src2_ctl_r <= (others => '0'); alu_op_ctl_r <= (others => '0'); jump_ctl_r <= (others => '0'); branch_ctl_r <= (others => '0'); mem_write_ctl_r <= (others => '0'); mem_read_ctl_r <= (others => '0'); sig_read_ctl_r <= '0'; reg_to_mem_r <= '0'; mem_to_reg_r <= '0'; elsif clock'event and clock = '1' then if stall = '0' then if irq_ack_s = '1' then rd_r <= (others => '0'); rs1_r <= (others => '0'); rs2_r <= (others => '0'); imm_i_r <= (others => '0'); imm_s_r <= (others => '0'); imm_sb_r <= (others => '0'); imm_u_r <= (others => '0'); imm_uj_r <= (others => '0'); reg_write_ctl_r <= '0'; alu_src1_ctl_r <= '0'; alu_src2_ctl_r <= (others => '0'); alu_op_ctl_r <= (others => '0'); jump_ctl_r <= (others => '0'); branch_ctl_r <= (others => '0'); mem_write_ctl_r <= (others => '0'); mem_read_ctl_r <= (others => '0'); sig_read_ctl_r <= '0'; reg_to_mem_r <= '0'; mem_to_reg_r <= '0'; else if mwait = '0' then if (reg_to_mem_r = '1' or mem_to_reg_r = '1' or except = '1' or branch_taken = '1' or jump_taken = '1' or bds = '1') then rd_r <= (others => '0'); rs1_r <= (others => '0'); rs2_r <= (others => '0'); imm_i_r <= (others => '0'); imm_s_r <= (others => '0'); imm_sb_r <= (others => '0'); imm_u_r <= (others => '0'); imm_uj_r <= (others => '0'); reg_write_ctl_r <= '0'; alu_src1_ctl_r <= '0'; alu_src2_ctl_r <= (others => '0'); alu_op_ctl_r <= (others => '0'); jump_ctl_r <= (others => '0'); branch_ctl_r <= (others => '0'); mem_write_ctl_r <= (others => '0'); mem_read_ctl_r <= (others => '0'); sig_read_ctl_r <= '0'; reg_to_mem_r <= '0'; mem_to_reg_r <= '0'; else rd_r <= rd; rs1_r <= rs1; rs2_r <= rs2; imm_i_r <= imm_i; imm_s_r <= imm_s; imm_sb_r <= imm_sb; imm_u_r <= imm_u; imm_uj_r <= imm_uj; reg_write_ctl_r <= reg_write_ctl; alu_src1_ctl_r <= alu_src1_ctl; alu_src2_ctl_r <= alu_src2_ctl; alu_op_ctl_r <= alu_op_ctl; jump_ctl_r <= jump_ctl; branch_ctl_r <= branch_ctl; mem_write_ctl_r <= mem_write_ctl; mem_read_ctl_r <= mem_read_ctl; sig_read_ctl_r <= sig_read_ctl; reg_to_mem_r <= reg_to_mem; mem_to_reg_r <= mem_to_reg; end if; end if; end if; end if; end if; end process; -- -- EXECUTE STAGE -- -- 3rd stage (a) register file access (read) -- the register file register_bank: entity work.reg_bank port map( clock => clock, read_reg1 => read_reg1, read_reg2 => read_reg2, write_reg => write_reg, wreg => wreg, write_data => write_data, read_data1 => read_data1, read_data2 => read_data2 ); -- register file read/write selection and write enable read_reg1 <= rs1_r; read_reg2 <= rs2_r; write_reg <= rd_r; wreg <= (reg_write_ctl_r or mem_to_reg_r_dly) and not mwait and not stall_reg; -- 3rd stage (b) ALU operation alu: entity work.alu port map( op1 => alu_src1, op2 => alu_src2, alu_op => alu_op_ctl_r, result => result, zero => zero, less_than => less_than ); alu_src1 <= read_data1 when alu_src1_ctl_r = '0' else pc_last2; alu_src2 <= imm_u_r & x"000" when alu_src2_ctl_r = "000" else imm_i_r when alu_src2_ctl_r = "001" else imm_s_r when alu_src2_ctl_r = "010" else pc when alu_src2_ctl_r = "011" else x"000000" & "000" & rs2_r when alu_src2_ctl_r = "100" else read_data2; branch_src1 <= read_data1 when jump_ctl_r = "11" else pc_last2; branch_src2 <= imm_uj_r when jump_ctl_r = "10" else imm_i_r when jump_ctl_r = "11" else imm_sb_r; branch <= branch_src1 + branch_src2; branch_taken <= '1' when (zero = '1' and branch_ctl_r = "001") or -- BEQ (zero = '0' and branch_ctl_r = "010") or -- BNE (less_than = '1' and branch_ctl_r = "011") or -- BLT (less_than = '0' and branch_ctl_r = "100") or -- BGE (less_than = '1' and branch_ctl_r = "101") or -- BLTU (less_than = '0' and branch_ctl_r = "110") -- BGEU else '0'; except <= '1' when branch_ctl_r = "111" else '0'; jump_taken <= '1' when jump_ctl_r /= "00" else '0'; address <= result when data_access_s = '1' and mwait = '1' else pc; data_access_s <= '1' when reg_to_mem_r = '1' or mem_to_reg_r = '1' else '0'; mwait <= '1' when data_access_s = '1' and data_access_s_dly = '0' else '0'; data_access <= mwait; -- 3rd stage (c) data memory / write back operation, register file access (write) -- memory access, store operations process(mem_write_ctl_r, result, read_data2) begin case mem_write_ctl_r is when "11" => -- store word data_out <= read_data2(7 downto 0) & read_data2(15 downto 8) & read_data2(23 downto 16) & read_data2(31 downto 24); data_w <= "1111"; when "01" => -- store byte data_out <= read_data2(7 downto 0) & read_data2(7 downto 0) & read_data2(7 downto 0) & read_data2(7 downto 0); case result(1 downto 0) is when "11" => data_w <= "0001"; when "10" => data_w <= "0010"; when "01" => data_w <= "0100"; when others => data_w <= "1000"; end case; when "10" => -- store half word data_out <= read_data2(7 downto 0) & read_data2(15 downto 8) & read_data2(7 downto 0) & read_data2(15 downto 8); case result(1) is when '1' => data_w <= "0011"; when others => data_w <= "1100"; end case; when others => -- WTF?? data_out <= read_data2(7 downto 0) & read_data2(15 downto 8) & read_data2(23 downto 16) & read_data2(31 downto 24); data_w <= "0000"; end case; end process; -- memory access, load operations process(mem_read_ctl_r, result, data_in) begin case mem_read_ctl_r is when "01" => -- load byte case result(1 downto 0) is when "11" => data_in_s <= x"000000" & data_in(7 downto 0); when "10" => data_in_s <= x"000000" & data_in(15 downto 8); when "01" => data_in_s <= x"000000" & data_in(23 downto 16); when others => data_in_s <= x"000000" & data_in(31 downto 24); end case; when "10" => -- load half word case result(1) is when '1' => data_in_s <= x"0000" & data_in(7 downto 0) & data_in(15 downto 8); when others => data_in_s <= x"0000" & data_in(23 downto 16) & data_in(31 downto 24); end case; when others => -- load word data_in_s <= data_in(7 downto 0) & data_in(15 downto 8) & data_in(23 downto 16) & data_in(31 downto 24); end case; end process; -- write back ext32b <= x"000000" & data_in_s(7 downto 0) when (data_in_s(7) = '0' or sig_read_ctl_r = '0') else x"ffffff" & data_in_s(7 downto 0); ext32h <= x"0000" & data_in_s(15 downto 0) when (data_in_s(15) = '0' or sig_read_ctl_r = '0') else x"ffff" & data_in_s(15 downto 0); write_data <= data_in_s when mem_read_ctl_r = "11" else ext32b when mem_read_ctl_r = "01" else ext32h when mem_read_ctl_r = "10" else pc_last when jump_taken = '1' else result; end arch_datapath;