URL
https://opencores.org/ocsvn/hive/hive/trunk
Subversion Repositories hive
[/] [hive/] [trunk/] [v01.10/] [core.v] - Rev 4
Go to most recent revision | Compare with Previous | Blame | View Log
/* -------------------------------------------------------------------------------- Module : core.v -------------------------------------------------------------------------------- Function: - Processor core with 8 stage pipeline, 8 threads, and 4 stacks per thread. Instantiates: - control_ring.v - data_ring.v - reg_set.v - reg_set_shim.v - dp_ram_infer.v -------------------- - Revision History - -------------------- v01.10 - 2013-07-06 - Shuffled opcode encoding again: - Unused jmp_iz never houses rd_i ops. - Unused jmp_i never houses wr_i ops. - jmp_i always immediate field reduced to 5 bits for consistency, which leaves an unused 32 code gap. - Edited boot code tests to work with this new encoding. v01.09 (cont) - 2013-06-25 - Passes boot code verification for: - All I/O ops. v01.09 - 2013-06-24 - First public release. - Shuffled opcode encoding again: - Unused never jmp_i fits read/write perfectly. - Unused always jmp_i zero comparison allows for 1 bit immediate field expansion of jmp_i(gle/z). - Removed all skip instructions (redundant w/ jmp_i). - All the above allows add_i immediate field expansion to 6 bits. - Opcode encoding is now more straightforward with fewer immediate field sizes. - Worked on pc_ring.v and pointer_ring.v, now use simple loops rather than generate, the logic produced better tracks the module paramters. - Removed "skp" control bit from pc_ring.v, op_decode.v, control_ring.v. - Removed intr_ack_o from core I/O. - Renamed "register_set*" => "reg_set*". - (Considering adding a leading zero count opcode, it doesn't take many LEs.) - Seeing a write to thread 7 stack 0 memory at startup, don't think it means anything due to clearing. - Passes boot code verification for: - Interrupts. - Stack ops, depth, error reporting (all threads). - All branch / conditional ops. - All logical / arithmetic / shift ops. v01.08 - 2013-06-14 - Added parameter options for stack pointer error protections & brought them to the top level. - The unsigned restoring division subroutine works! v01.07 - 2013-06-11 - Changed opcodes to make swapping of (A?B) operands cover all logical needs: - op_skp_ul => op_skp_l - op_skp_ge => op_skp_uge - op_jmp_iul => op_jmp_il - op_jmp_ige => op_jmp_iuge - Changed verification boot code tests to reflect above (passes). v01.06 - 2013-06-10 - Fixed latency of test fields in op_decode.v (were only registered 1x, s/b 2x). - Fixed subtle immediate address offset sign issue in pc_ring.v. - Fixed subtle immediate data sign issue in stacks_mux.v. - Minor style edits to visually align port names @ vector_sr.v instances. - The log2 subroutine works! v01.05 - 2013-06-07 - Put the skip instructions back (for convenience & clarity). - Changes to op_decode.v, separate immediate data and address decodes, misc. edits to improve speed. - Renamed "op_codes.h" => "op_encode.h". - Lots of minor edits at the higher levels. - Added "copyright.txt" to directory. v01.04 - 2013-06-06 - Added op_jmp_i (A?B) instructions. - Removed all skip instructions (redundant). v01.03 - 2013-06-04 - Changed op_jmp_i to be conditional (A?0). - Renamed "addr_regs.h" => "register_set_addr.h". - New boot code does log2. v01.02 (cont) - 2013-05-23 - Old boot code file renamed: "boot_code.h" => "boot_code_00.h". - New boot code file tests all op_codes and gives final report. v01.02 - 2013-05-22 - Memory writes now work, the fix was to swap pc/op_code ROM side A with data RW side B of main memory "dp_ram_infer.v". It seems side A is incorrectly used as the master mode for both ports. - Renamed "alu_input_mux.v" => "stacks_mux.v". - Removed enable from "register_set.v" and "register_set_shim.v". - Monkeyed with "register_set_shim.v" a bit. - Removed async resets from "dp_ram_infer.v" and "dq_ram_infer.v". - Passes boot code tests 0, 1, 2, 3, 4. v01.01 - 2013-05-22 - Added clear and interrupt BASE and SPAN parameters. - Because BASE is a simple MSB concatenation, for it to be effective make BASE >= 2^(THRD_W+SPAN). BASE LSBs below this point are ignored. - Individual clear and interrupt address interspacing = 2^SPAN. - Example: CLR_BASE ='h0 positions thread 0 clear @ 0. CLR_SPAN =2 positions thread 1 clear @ 4, thread 2 @ 8, etc. INTR_BASE='h20 positions thread 0 interrupt @ 'd32. INTR_SPAN=2 positions thread 1 interrupt @ 'd36, thread 2 @ 'd40, etc. - Moved most core top port parameters to localparam. - Modified boot code tests accordingly. - Passes boot code tests 0, 1, 2. - Memory writes still don't work! v01.00 - 2013-05-21 - born - EP3C5E144C8: ~180MHz, ~1785 LEs (34% of logic). - Fixed immediate value bug (was only registered 1x in op_decode.v, s/b 2x). - Passes boot code tests 0, 1, 2. - Memory writes don't work! -------------------------------------------------------------------------------- */ module core #( parameter integer DATA_W = 32, // data width parameter integer THREADS = 8, // threads parameter [DATA_W/4-1:0] VER_MAJ = 'h01, // core version parameter [DATA_W/4-1:0] VER_MIN = 'h10 // core version ) ( // clocks & resets input wire clk_i, // clock input wire rst_i, // async. reset, active high // input wire [THREADS-1:0] intr_req_i, // event request, active high // input wire [DATA_W-1:0] io_i, // gpio output wire [DATA_W-1:0] io_o ); /* ---------------------- -- internal signals -- ---------------------- */ `include "functions.h" // for clog2() // localparam integer ADDR_W = 16; // address width localparam integer PNTR_W = 5; // stack pointer width localparam integer MEM_ADDR_W = 13; // main memory width localparam [ADDR_W-1:0] CLR_BASE = 'h0; // clear address base (concat) localparam integer CLR_SPAN = 2; // clear address span (2^n) localparam [ADDR_W-1:0] INTR_BASE = 'h20; // interrupt address base (concat) localparam integer INTR_SPAN = 2; // interrupt address span (2^n) localparam integer THRD_W = clog2( THREADS ); localparam integer STACKS = 4; // number of stacks localparam integer STK_W = clog2( STACKS ); localparam integer IM_DATA_W = 8; // immediate data width localparam integer IM_ADDR_W = 5; // immediate address width localparam integer LG_W = 2; localparam integer OP_CODE_W = DATA_W/2; localparam integer REG_ADDR_W = 4; localparam integer IM_RW_W = 4; localparam integer POP_PROT = 1; // 1=error protection, 0=none localparam integer PUSH_PROT = 1; // 1=error protection, 0=none // wire [THREADS-1:0] clr_req; wire [THREADS-1:0] intr_en; wire [OP_CODE_W-1:0] op_code; wire op_code_er; wire [STK_W-1:0] a_sel, b_sel; wire imda, sgn, ext; wire [LG_W-1:0] lg; wire add, sub, mul, shl, cpy, dm, rtn, rd, wr; wire stk_clr; wire [STACKS-1:0] pop, push, pop_er, push_er; wire [DATA_W-1:0] a, b; wire [IM_DATA_W-1:0] im_data; wire [IM_ADDR_W-1:0] im_addr; wire nez, ne, ltz, lt; wire [THRD_W-1:0] thrd_0, thrd_2, thrd_3, thrd_6; wire [ADDR_W-1:0] pc_1, pc_3, pc_4; wire [DATA_W/2-1:0] dm_rd_data; wire [DATA_W/2-1:0] rd_data, wr_data; wire [ADDR_W-1:0] addr; wire regs_wr, regs_rd, dm_wr; /* ================ == code start == ================ */ // the control ring control_ring #( .DATA_W ( DATA_W ), .ADDR_W ( ADDR_W ), .THREADS ( THREADS ), .THRD_W ( THRD_W ), .STACKS ( STACKS ), .STK_W ( STK_W ), .IM_DATA_W ( IM_DATA_W ), .IM_ADDR_W ( IM_ADDR_W ), .OP_CODE_W ( OP_CODE_W ), .LG_W ( LG_W ), .CLR_BASE ( CLR_BASE ), .CLR_SPAN ( CLR_SPAN ), .INTR_BASE ( INTR_BASE ), .INTR_SPAN ( INTR_SPAN ) ) control_ring ( .clk_i ( clk_i ), .rst_i ( rst_i ), .clr_req_i ( clr_req ), .clr_ack_o ( ), // unused .intr_en_i ( intr_en ), .intr_req_i ( intr_req_i ), .intr_ack_o ( ), // unused .op_code_i ( op_code ), .op_code_er_o ( op_code_er ), .b_lo_i ( b[DATA_W/2-1:0] ), .im_data_o ( im_data ), .a_sel_o ( a_sel ), .b_sel_o ( b_sel ), .imda_o ( imda ), .sgn_o ( sgn ), .ext_o ( ext ), .lg_o ( lg ), .add_o ( add ), .sub_o ( sub ), .mul_o ( mul ), .shl_o ( shl ), .cpy_o ( cpy ), .dm_o ( dm ), .rtn_o ( rtn ), .rd_o ( rd ), .wr_o ( wr ), .stk_clr_o ( stk_clr ), .pop_o ( pop ), .push_o ( push ), .nez_i ( nez ), .ne_i ( ne ), .ltz_i ( ltz ), .lt_i ( lt ), .thrd_0_o ( thrd_0 ), .thrd_2_o ( thrd_2 ), .thrd_3_o ( thrd_3 ), .thrd_6_o ( thrd_6 ), .im_addr_o ( im_addr ), .pc_1_o ( pc_1 ), .pc_3_o ( pc_3 ), .pc_4_o ( pc_4 ) ); // the data ring data_ring #( .DATA_W ( DATA_W ), .ADDR_W ( ADDR_W ), .THREADS ( THREADS ), .THRD_W ( THRD_W ), .STACKS ( STACKS ), .STK_W ( STK_W ), .PNTR_W ( PNTR_W ), .IM_DATA_W ( IM_DATA_W ), .LG_W ( LG_W ), .POP_PROT ( POP_PROT ), .PUSH_PROT ( PUSH_PROT ) ) data_ring ( .clk_i ( clk_i ), .rst_i ( rst_i ), .a_sel_i ( a_sel ), .b_sel_i ( b_sel ), .imda_i ( imda ), .sgn_i ( sgn ), .ext_i ( ext ), .lg_i ( lg ), .add_i ( add ), .sub_i ( sub ), .mul_i ( mul ), .shl_i ( shl ), .cpy_i ( cpy ), .dm_i ( dm ), .rtn_i ( rtn ), .stk_clr_i ( stk_clr ), .pop_i ( pop ), .push_i ( push ), .thrd_6_i ( thrd_6 ), .im_data_i ( im_data ), .dm_data_i ( rd_data ), .pc_3_i ( pc_3 ), .a_o ( a ), .b_o ( b ), .nez_o ( nez ), .ne_o ( ne ), .ltz_o ( ltz ), .lt_o ( lt ), .pop_er_o ( pop_er ), .push_er_o ( push_er ) ); // shim for memory and register set access reg_set_shim #( .REGS_IN ( 1 ), .REGS_OUT ( 1 ), .DATA_W ( DATA_W ), .ADDR_W ( ADDR_W ), .REG_ADDR_W ( REG_ADDR_W ), .IM_ADDR_W ( IM_RW_W ) ) reg_set_shim ( .clk_i ( clk_i ), .rst_i ( rst_i ), .a_i ( a ), .ext_i ( ext ), .wr_data_o ( wr_data ), .b_lo_i ( b[DATA_W/2-1:0] ), .im_addr_i ( im_addr[IM_RW_W-1:0] ), .pc_1_i ( pc_1 ), .addr_o ( addr ), .wr_i ( wr ), .rd_i ( rd ), .regs_wr_o ( regs_wr ), .regs_rd_o ( regs_rd ), .dm_wr_o ( dm_wr ) ); // internal register set reg_set #( .REGS_IN ( 1 ), .REGS_OUT ( 1 ), .DATA_W ( DATA_W/2 ), .ADDR_W ( REG_ADDR_W ), .THREADS ( THREADS ), .THRD_W ( THRD_W ), .STACKS ( STACKS ), .STK_W ( STK_W ), .VER_MAJ ( VER_MAJ ), .VER_MIN ( VER_MIN ) ) reg_set ( .clk_i ( clk_i ), .rst_i ( rst_i ), .addr_i ( addr[REG_ADDR_W-1:0] ), .wr_i ( regs_wr ), .rd_i ( regs_rd ), .data_i ( wr_data ), .data_o ( rd_data ), .dm_data_i ( dm_rd_data ), .clr_req_o ( clr_req ), .intr_en_o ( intr_en ), .thrd_0_i ( thrd_0 ), .op_code_er_i ( op_code_er ), .thrd_2_i ( thrd_2 ), .pop_er_i ( pop_er ), .thrd_3_i ( thrd_3 ), .push_er_i ( push_er ), .io_lo_i ( io_i[DATA_W/2-1:0] ), .io_hi_i ( io_i[DATA_W-1:DATA_W/2] ), .io_lo_o ( io_o[DATA_W/2-1:0] ), .io_hi_o ( io_o[DATA_W-1:DATA_W/2] ) ); // instruction and data memory dp_ram_infer #( .REG_A_OUT ( 1 ), .REG_B_OUT ( 1 ), .DATA_W ( OP_CODE_W ), .ADDR_W ( MEM_ADDR_W ), .RD_MODE ( "WR_DATA" ) // functional don't care ) main_mem ( .a_clk_i ( clk_i ), .a_addr_i ( addr ), .a_wr_i ( dm_wr ), .a_data_i ( wr_data ), .a_data_o ( dm_rd_data ), .b_clk_i ( clk_i ), .b_addr_i ( pc_4 ), .b_wr_i ( 1'b0 ), // unused .b_data_i ( ), // unused .b_data_o ( op_code ) ); endmodule
Go to most recent revision | Compare with Previous | Blame | View Log