OpenCores
URL https://opencores.org/ocsvn/ion/ion/trunk

Subversion Repositories ion

[/] [ion/] [trunk/] [tools/] [slite/] [src/] [slite.c] - Rev 31

Go to most recent revision | Compare with Previous | Blame | View Log

/*------------------------------------------------------------------------------
* slite.c -- MIPS-I simulator based on Steve Rhoad's "mlite"
*
* This is a slightly modified version of Steve Rhoad's "mlite" simulator, which
* is part of his PLASMA project (original date: 1/31/01).
*
*-------------------------------------------------------------------------------
* Usage:
*     slite <code file name> <data file name>
*
* The program will allocate a chunk of RAM (MEM_SIZE bytes) and map it to
* address 0x00000000 of the simulated CPU.
* Then it will read the 'code file' (as a big-endian plain binary) onto address
* 0x0 of the simulated CPU memory, and 'data file' on address 0x10000.
* Finally, will reset the CPU and enter the interactive debugger.
*
* (Note that the above is only necessary if the system does not have caches,
* because of the Harvard architecture. With caches in place, program loading
* would be antirely conventional).
*
* A simulation log file will be dumped to file "sw_sim_log.txt". This log can be
* used to compare with an equivalent log dumped by the hardware simulation, as
* a simple way to validate the hardware for a given program. See the project
* readme files for details.
*
*-------------------------------------------------------------------------------
* KNOWN BUGS:
*
*-------------------------------------------------------------------------------
* @date 2011-jan-16
*
*-------------------------------------------------------------------------------
* COPYRIGHT:    Software placed into the public domain by the author.
*               Software 'as is' without warranty.  Author liable for nothing.
*
* IMPORTANT: Assumes host is little endian.
*-----------------------------------------------------------------------------*/
 
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
 
/** Set to !=0 to disable file logging (much faster simulation) */
#define FILE_LOGGING_DISABLED (0)
/** Define to enable cache simulation (unimplemented) */
//#define ENABLE_CACHE
 
 
/*---- Definition of simulated system parameters -----------------------------*/
 
 
#define VECTOR_RESET (0x00000000)
#define VECTOR_TRAP  (0x0000003c)
 
typedef struct s_block {
    uint32_t start;
    uint32_t size;
    uint8_t  *mem;
    char     *name;
} t_block;
 
 
/* Here's where we define the memory areas (blocks) of the system */
/* (make sure they don't overlap or the simulated program will crash) */
 
#define NUM_MEM_BLOCKS (2)
 
t_block default_blocks[NUM_MEM_BLOCKS] = {
    /* meant as bootstrap block, though it's read/write */
    {VECTOR_RESET,  0x00010000, NULL, "ROM"},
    /* main ram block  */
    {0x80000000,    0x00010000, NULL, "Data"}
};
 
 
#define ntohs(A) ( ((A)>>8) | (((A)&0xff)<<8) )
#define htons(A) ntohs(A)
#define ntohl(A) ( ((A)>>24) | (((A)&0xff0000)>>8) | (((A)&0xff00)<<8) | ((A)<<24) )
#define htonl(A) ntohl(A)
 
/*---- OS-dependent support functions and definitions ------------------------*/
#ifndef WIN32
//Support for Linux
#define putch putchar
#include <termios.h>
#include <unistd.h>
 
void slite_sleep(unsigned int value){
    usleep(value * 1000);
}
 
int kbhit(void){
    struct termios oldt, newt;
    struct timeval tv;
    fd_set read_fd;
 
    tcgetattr(STDIN_FILENO, &oldt);
    newt = oldt;
    newt.c_lflag &= ~(ICANON | ECHO);
    tcsetattr(STDIN_FILENO, TCSANOW, &newt);
    tv.tv_sec=0;
    tv.tv_usec=0;
    FD_ZERO(&read_fd);
    FD_SET(0,&read_fd);
    if(select(1, &read_fd, NULL, NULL, &tv) == -1){
        return 0;
    }
    //tcsetattr(STDIN_FILENO, TCSANOW, &oldt);
    if(FD_ISSET(0,&read_fd)){
        return 1;
    }
    return 0;
}
 
int getch(void){
    struct termios oldt, newt;
    int ch;
 
    tcgetattr(STDIN_FILENO, &oldt);
    newt = oldt;
    newt.c_lflag &= ~(ICANON | ECHO);
    tcsetattr(STDIN_FILENO, TCSANOW, &newt);
    ch = getchar();
    //tcsetattr(STDIN_FILENO, TCSANOW, &oldt);
    return ch;
}
#else
//Support for Windows
#include <conio.h>
extern void __stdcall Sleep(unsigned long value);
 
void slite_sleep(unsigned int value){
    Sleep(value);
}
 
#endif
/*---- End of OS-dependent support functions and definitions -----------------*/
 
/*---- Hardware system parameters --------------------------------------------*/
 
/* Much of this is a remnant from Plasma's mlite and is  no longer used. */
/* FIXME Refactor HW system params */
 
#define UART_WRITE        0x20000000
#define UART_READ         0x20000000
#define IRQ_MASK          0x20000010
#define IRQ_STATUS        0x20000020
#define CONFIG_REG        0x20000070
#define MMU_PROCESS_ID    0x20000080
#define MMU_FAULT_ADDR    0x20000090
#define MMU_TLB           0x200000a0
 
#define IRQ_UART_READ_AVAILABLE  0x001
#define IRQ_UART_WRITE_AVAILABLE 0x002
#define IRQ_COUNTER18_NOT        0x004
#define IRQ_COUNTER18            0x008
#define IRQ_MMU                  0x200
 
/*----------------------------------------------------------------------------*/
 
/* These are flags that will be used to notify the main cycle function of any
   failed assertions in its subfunctions. */
#define ASRT_UNALIGNED_READ         (1<<0)
#define ASRT_UNALIGNED_WRITE        (1<<1)
 
char *assertion_messages[2] = {
   "Unaligned read",
   "Unaligned write"
};
 
 
/** Length of debugging jump target queue */
#define TRACE_BUFFER_SIZE (32)
 
typedef struct s_trace {
   unsigned int buf[TRACE_BUFFER_SIZE];   /**< queue of last jump targets */
   unsigned int next;                     /**< internal queue head pointer */
   FILE *log;                             /**< text log file or NULL */
   int pr[32];                            /**< last value of register bank */
   int hi, lo, epc;                       /**< last value of internal regs */
} t_trace;
 
typedef struct s_state {
   unsigned failed_assertions;            /**< assertion bitmap */
   unsigned faulty_address;               /**< addr that failed assertion */
 
   int delay_slot;              /**< !=0 if prev. instruction was a branch */
 
   int r[32];
   int opcode;
   int pc, pc_next, epc;
   unsigned int hi;
   unsigned int lo;
   int status;
   unsigned cp0_cause;
   int userMode;
   int processId;
   int exceptionId;        /**< DEPRECATED, to be removed */
   int faultAddr;
   int irqStatus;
   int skip;
   t_trace t;
   //unsigned char *mem;
   t_block blocks[NUM_MEM_BLOCKS];
   int wakeup;
   int big_endian;
} t_state;
 
static char *opcode_string[]={
   "SPECIAL","REGIMM","J","JAL","BEQ","BNE","BLEZ","BGTZ",
   "ADDI","ADDIU","SLTI","SLTIU","ANDI","ORI","XORI","LUI",
   "COP0","COP1","COP2","COP3","BEQL","BNEL","BLEZL","BGTZL",
   "?","?","?","?","?","?","?","?",
   "LB","LH","LWL","LW","LBU","LHU","LWR","?",
   "SB","SH","SWL","SW","?","?","SWR","CACHE",
   "LL","LWC1","LWC2","LWC3","?","LDC1","LDC2","LDC3"
   "SC","SWC1","SWC2","SWC3","?","SDC1","SDC2","SDC3"
};
 
static char *special_string[]={
   "SLL","?","SRL","SRA","SLLV","?","SRLV","SRAV",
   "JR","JALR","MOVZ","MOVN","SYSCALL","BREAK","?","SYNC",
   "MFHI","MTHI","MFLO","MTLO","?","?","?","?",
   "MULT","MULTU","DIV","DIVU","?","?","?","?",
   "ADD","ADDU","SUB","SUBU","AND","OR","XOR","NOR",
   "?","?","SLT","SLTU","?","DADDU","?","?",
   "TGE","TGEU","TLT","TLTU","TEQ","?","TNE","?",
   "?","?","?","?","?","?","?","?"
};
 
static char *regimm_string[]={
   "BLTZ","BGEZ","BLTZL","BGEZL","?","?","?","?",
   "TGEI","TGEIU","TLTI","TLTIU","TEQI","?","TNEI","?",
   "BLTZAL","BEQZAL","BLTZALL","BGEZALL","?","?","?","?",
   "?","?","?","?","?","?","?","?"
};
 
static unsigned int HWMemory[8];
 
/*---- Local function prototypes ---------------------------------------------*/
 
/* Debug and logging */
void init_trace_buffer(t_state *s, const char *log_file_name);
void close_trace_buffer(t_state *s);
void dump_trace_buffer(t_state *s);
void log_cycle(t_state *s);
void log_read(t_state *s, int full_address, int word_value, int size, int log);
void log_failed_assertions(t_state *s);
 
/* CPU model */
void free_cpu(t_state *s);
void init_cpu(t_state *s);
void reset_cpu(t_state *s);
 
/* Hardware simulation */
int mem_read(t_state *s, int size, unsigned int address, int log);
void mem_write(t_state *s, int size, unsigned address, unsigned value, int log);
void start_load(t_state *s, int rt, int data);
 
 
/*---- Local functions -------------------------------------------------------*/
 
/** Log to file a memory read operation (not including target reg change) */
void log_read(t_state *s, int full_address, int word_value, int size, int log){
   if(s->t.log!=NULL && log!=0){
      if(size==4){ size=0x04; }
      else if(size==2){ size=0x02; }
      else { size=0x01; }
      fprintf(s->t.log, "(%08X) [%08X] <**>=%08X RD\n",
              s->pc, full_address, /*size,*/ word_value);
   }
}
 
/** Read memory, optionally logging */
int mem_read(t_state *s, int size, unsigned int address, int log){
    unsigned int value=0, word_value=0, i, ptr;
    unsigned int full_address = address;
 
    s->irqStatus |= IRQ_UART_WRITE_AVAILABLE;
    switch(address){
    case UART_READ:
        word_value = 0x00000001;
        log_read(s, full_address, word_value, size, log);
        return word_value;
        /* FIXME Take input from text file */
        /*
        if(kbhit()){
            HWMemory[0] = getch();
        }
        s->irqStatus &= ~IRQ_UART_READ_AVAILABLE; //clear bit
        return HWMemory[0];
        */
    case IRQ_MASK:
       return HWMemory[1];
    case IRQ_MASK + 4:
       slite_sleep(10);
       return 0;
    case IRQ_STATUS:
       /*if(kbhit())
          s->irqStatus |= IRQ_UART_READ_AVAILABLE;
       return s->irqStatus;
       */
       /* FIXME Optionally simulate UART TX delay */
       word_value = 0x00000003; /* Ready to TX and RX */
       log_read(s, full_address, word_value, size, log);
       return word_value;
    case MMU_PROCESS_ID:
       return s->processId;
    case MMU_FAULT_ADDR:
       return s->faultAddr;
    }
 
    /* point ptr to the byte in the block, or NULL is the address is unmapped */
    ptr = 0;
    for(i=0;i<NUM_MEM_BLOCKS;i++){
        if(address >= s->blocks[i].start &&
          address < s->blocks[i].start + s->blocks[i].size){
            ptr = (unsigned)(s->blocks[i].mem) + address - s->blocks[i].start;
            break;
        }
    }
    if(!ptr){
        /* address out of mapped blocks: log and return zero */
        if(s->t.log!=NULL && log!=0){
            fprintf(s->t.log, "(%08X) [%08X] <**>=%08X RD UNMAPPED\n",
                s->pc, full_address, 0);
        }
        return 0;
    }
 
    /* get the whole word */
    word_value = *(int*)(ptr&0xfffffffc);
    if(s->big_endian){
        word_value = ntohl(word_value);
    }
 
    switch(size){
    case 4:
        if(address & 3){
            printf("Unaligned access PC=0x%x address=0x%x\n",
                (int)s->pc, (int)address);
        }
        if((address & 3) != 0){
            /* unaligned word, log fault */
            s->failed_assertions |= ASRT_UNALIGNED_READ;
            s->faulty_address = address;
            address = address & 0xfffffffc;
        }
        value = *(int*)ptr;
        if(s->big_endian){
            value = ntohl(value);
        }
        break;
    case 2:
        if((address & 1) != 0){
            /* unaligned halfword, log fault */
            s->failed_assertions |= ASRT_UNALIGNED_READ;
            s->faulty_address = address;
            address = address & 0xfffffffe;
        }
        value = *(unsigned short*)ptr;
        if(s->big_endian){
            value = ntohs((unsigned short)value);
        }
        break;
    case 1:
        value = *(unsigned char*)ptr;
        break;
    default:
        /* FIXME this is a bug, should quit */
        printf("ERROR");
    }
 
    log_read(s, full_address, word_value, size, log);
    return(value);
}
 
/** Write memory */
void mem_write(t_state *s, int size, unsigned address, unsigned value, int log){
    unsigned int i, ptr, mask, dvalue, b0, b1, b2, b3;
 
    if(s->t.log!=NULL){
        b0 = value & 0x000000ff;
        b1 = value & 0x0000ff00;
        b2 = value & 0x00ff0000;
        b3 = value & 0xff000000;
 
        switch(size){
        case 4:  mask = 0x0f;
            dvalue = value;
            break;
        case 2:
            if((address&0x2)==0){
                mask = 0xc;
                dvalue = b1<<16 | b0<<16;
            }
            else{
               mask = 0x3;
               dvalue = b1 | b0;
            }
            break;
        case 1:
            switch(address%4){
            case 0 : mask = 0x8;
                dvalue = b0<<24;
                break;
            case 1 : mask = 0x4;
                dvalue = b0<<16;
                break;
            case 2 : mask = 0x2;
                dvalue = b0<<8;
                break;
            case 3 : mask = 0x1;
                dvalue = b0;
                break;
            }
            break;
        default:
            printf("BUG: mem write size invalid (%08x)\n", s->pc);
            exit(2);
        }
 
        fprintf(s->t.log, "(%08X) [%08X] |%02X|=%08X WR\n",
                s->pc, address, mask, dvalue);
    }
 
    switch(address){
    case UART_WRITE:
        putch(value);
        fflush(stdout);
        return;
    case IRQ_MASK:
        HWMemory[1] = value;
        return;
    case IRQ_STATUS:
        s->irqStatus = value;
        return;
    case CONFIG_REG:
        return;
    case MMU_PROCESS_ID:
        //printf("processId=%d\n", value);
        s->processId = value;
        return;
    }
 
    //ptr = (unsigned int)s->mem + (address % MEM_SIZE);
    if(address >= 0x80000000){
        ptr = 1;
    }
    ptr = 0;
    for(i=0;i<NUM_MEM_BLOCKS;i++){
        if(address >= s->blocks[i].start &&
          address < s->blocks[i].start + s->blocks[i].size){
            ptr = (unsigned)(s->blocks[i].mem) + address - s->blocks[i].start;
            break;
        }
    }
    if(!ptr){
        /* address out of mapped blocks: log and return zero */
        if(s->t.log!=NULL && log!=0){
            fprintf(s->t.log, "(%08X) [%08X] |%02X|=%08X WR UNMAPPED\n",
                s->pc, address, mask, dvalue);
        }
        return;
    }
 
    switch(size){
    case 4:
        if((address & 3) != 0){
            /* unaligned word, log fault */
            s->failed_assertions |= ASRT_UNALIGNED_WRITE;
            s->faulty_address = address;
            address = address & (~0x03);
        }
        if(s->big_endian){
            value = htonl(value);
        }
        *(int*)ptr = value;
        break;
    case 2:
        if((address & 1) != 0){
            /* unaligned halfword, log fault */
            s->failed_assertions |= ASRT_UNALIGNED_WRITE;
            s->faulty_address = address;
            address = address & (~0x01);
        }
        if(s->big_endian){
            value = htons((unsigned short)value);
        }
        *(short*)ptr = (unsigned short)value;
        break;
    case 1:
        *(char*)ptr = (unsigned char)value;
        break;
    default:
        /* FIXME this is a bug, should quit */
        printf("ERROR");
    }
}
 
/*---- Optional MMU and cache implementation ---------------------------------*/
 
/*
   The actual core does not have a cache so all of the original Plasma mlite.c
   code for cache simulation has been removed.
*/
 
/*---- End optional cache implementation -------------------------------------*/
 
 
/** Simulates MIPS-I multiplier unsigned behavior*/
void mult_big(unsigned int a,
              unsigned int b,
              unsigned int *hi,
              unsigned int *lo){
    unsigned int ahi, alo, bhi, blo;
    unsigned int c0, c1, c2;
    unsigned int c1_a, c1_b;
 
    ahi = a >> 16;
    alo = a & 0xffff;
    bhi = b >> 16;
    blo = b & 0xffff;
 
    c0 = alo * blo;
    c1_a = ahi * blo;
    c1_b = alo * bhi;
    c2 = ahi * bhi;
 
    c2 += (c1_a >> 16) + (c1_b >> 16);
    c1 = (c1_a & 0xffff) + (c1_b & 0xffff) + (c0 >> 16);
    c2 += (c1 >> 16);
    c0 = (c1 << 16) + (c0 & 0xffff);
    *hi = c2;
    *lo = c0;
}
 
/** Simulates MIPS-I multiplier signed behavior*/
void mult_big_signed(int a,
                     int b,
                     unsigned int *hi,
                     unsigned int *lo){
    int64_t xa, xb, xr, temp;
    int32_t rh, rl;
 
    xa = a;
    xb = b;
    xr = xa * xb;
 
    temp = (xr >> 32) & 0xffffffff;
    rh = temp;
    temp = (xr >> 0) & 0xffffffff;
    rl = temp;
 
    *hi = rh;
    *lo = rl;
}
 
/** Load data from memory (used to simulate load delay slots) */
void start_load(t_state *s, int rt, int data){
    /* load delay slot not simulated */
    s->r[rt] = data;
}
 
/** Execute one cycle of the CPU (including any interlock stall cycles) */
void cycle(t_state *s, int show_mode){
    unsigned int opcode;
    int delay_slot = 0; /* 1 of this instruction is a branch */
    unsigned int op, rs, rt, rd, re, func, imm, target;
    int trap_cause = 0;
    int imm_shift, branch=0, lbranch=2, skip2=0;
    int *r=s->r;
    unsigned int *u=(unsigned int*)s->r;
    unsigned int ptr, epc, rSave;
 
    if(!show_mode){
        /* if we're NOT showing output to console, log state of CPU to file */
        log_cycle(s);
    }
 
    opcode = mem_read(s, 4, s->pc, 0);
    op = (opcode >> 26) & 0x3f;
    rs = (opcode >> 21) & 0x1f;
    rt = (opcode >> 16) & 0x1f;
    rd = (opcode >> 11) & 0x1f;
    re = (opcode >> 6) & 0x1f;
    func = opcode & 0x3f;
    imm = opcode & 0xffff;
    imm_shift = (((int)(short)imm) << 2) - 4;
    target = (opcode << 6) >> 4;
    ptr = (short)imm + r[rs];
    r[0] = 0;
 
    /* if we are priting state to console, do it now */
    if(show_mode){
        printf("%8.8x %8.8x ", s->pc, opcode);
        if(op == 0){
            printf("%8s ", special_string[func]);
        }
        else if(op == 1){
            printf("%8s ", regimm_string[rt]);
        }
        else{
            printf("%8s ", opcode_string[op]);
        }
 
        printf("$%2.2d $%2.2d $%2.2d $%2.2d ", rs, rt, rd, re);
        printf("%4.4x", imm);
        if(show_mode == 1){
            printf(" r[%2.2d]=%8.8x r[%2.2d]=%8.8x", rs, r[rs], rt, r[rt]);
        }
        printf("\n");
    }
 
    /* if we're just showing state to console, quit and don't run instruction */
    if(show_mode > 5){
        return;
    }
 
    /* epc will point to the victim instruction, i.e. THIS instruction */
    epc = s->pc;
 
    s->pc = s->pc_next;
    s->pc_next = s->pc_next + 4;
    if(s->skip){
        s->skip = 0;
        return;
    }
    rSave = r[rt];
 
    switch(op){
    case 0x00:/*SPECIAL*/
        switch(func){
        case 0x00:/*SLL*/  r[rd]=r[rt]<<re;          break;
        case 0x02:/*SRL*/  r[rd]=u[rt]>>re;          break;
        case 0x03:/*SRA*/  r[rd]=r[rt]>>re;          break;
        case 0x04:/*SLLV*/ r[rd]=r[rt]<<r[rs];       break;
        case 0x06:/*SRLV*/ r[rd]=u[rt]>>r[rs];       break;
        case 0x07:/*SRAV*/ r[rd]=r[rt]>>r[rs];       break;
        case 0x08:/*JR*/   delay_slot=1;
                           s->pc_next=r[rs];         break;
        case 0x09:/*JALR*/ delay_slot=1;
                           r[rd]=s->pc_next;
                           s->pc_next=r[rs]; break;
        case 0x0a:/*MOVZ*/ if(!r[rt]) r[rd]=r[rs];   break;  /*IV*/
        case 0x0b:/*MOVN*/ if(r[rt]) r[rd]=r[rs];    break;  /*IV*/
        case 0x0c:/*SYSCALL*/ trap_cause = 8;
                              s->exceptionId=1; break;
        case 0x0d:/*BREAK*/   trap_cause = 9;
                              s->exceptionId=1; break;
        case 0x0f:/*SYNC*/ s->wakeup=1;              break;
        case 0x10:/*MFHI*/ r[rd]=s->hi;              break;
        case 0x11:/*FTHI*/ s->hi=r[rs];              break;
        case 0x12:/*MFLO*/ r[rd]=s->lo;              break;
        case 0x13:/*MTLO*/ s->lo=r[rs];              break;
        case 0x18:/*MULT*/ mult_big_signed(r[rs],r[rt],&s->hi,&s->lo); break;
        case 0x19:/*MULTU*/ mult_big(r[rs],r[rt],&s->hi,&s->lo); break;
        case 0x1a:/*DIV*/  s->lo=r[rs]/r[rt]; s->hi=r[rs]%r[rt]; break;
        case 0x1b:/*DIVU*/ s->lo=u[rs]/u[rt]; s->hi=u[rs]%u[rt]; break;
        case 0x20:/*ADD*/  r[rd]=r[rs]+r[rt];        break;
        case 0x21:/*ADDU*/ r[rd]=r[rs]+r[rt];        break;
        case 0x22:/*SUB*/  r[rd]=r[rs]-r[rt];        break;
        case 0x23:/*SUBU*/ r[rd]=r[rs]-r[rt];        break;
        case 0x24:/*AND*/  r[rd]=r[rs]&r[rt];        break;
        case 0x25:/*OR*/   r[rd]=r[rs]|r[rt];        break;
        case 0x26:/*XOR*/  r[rd]=r[rs]^r[rt];        break;
        case 0x27:/*NOR*/  r[rd]=~(r[rs]|r[rt]);     break;
        case 0x2a:/*SLT*/  r[rd]=r[rs]<r[rt];        break;
        case 0x2b:/*SLTU*/ r[rd]=u[rs]<u[rt];        break;
        case 0x2d:/*DADDU*/r[rd]=r[rs]+u[rt];        break;
        case 0x31:/*TGEU*/ break;
        case 0x32:/*TLT*/  break;
        case 0x33:/*TLTU*/ break;
        case 0x34:/*TEQ*/  break;
        case 0x36:/*TNE*/  break;
        default: printf("ERROR0(*0x%x~0x%x)\n", s->pc, opcode);
           s->wakeup=1;
        }
        break;
    case 0x01:/*REGIMM*/
        switch(rt){
            case 0x10:/*BLTZAL*/ r[31]=s->pc_next;
            case 0x00:/*BLTZ*/   branch=r[rs]<0;    break;
            case 0x11:/*BGEZAL*/ r[31]=s->pc_next;
            case 0x01:/*BGEZ*/   branch=r[rs]>=0;   break;
            case 0x12:/*BLTZALL*/r[31]=s->pc_next;
            case 0x02:/*BLTZL*/  lbranch=r[rs]<0;   break;
            case 0x13:/*BGEZALL*/r[31]=s->pc_next;
            case 0x03:/*BGEZL*/  lbranch=r[rs]>=0;  break;
            default: printf("ERROR1\n"); s->wakeup=1;
        }
        break;
    case 0x03:/*JAL*/    r[31]=s->pc_next;
    case 0x02:/*J*/      delay_slot=1;
                       s->pc_next=(s->pc&0xf0000000)|target; break;
    case 0x04:/*BEQ*/    branch=r[rs]==r[rt];     break;
    case 0x05:/*BNE*/    branch=r[rs]!=r[rt];     break;
    case 0x06:/*BLEZ*/   branch=r[rs]<=0;         break;
    case 0x07:/*BGTZ*/   branch=r[rs]>0;          break;
    case 0x08:/*ADDI*/   r[rt]=r[rs]+(short)imm;  break;
    case 0x09:/*ADDIU*/  u[rt]=u[rs]+(short)imm;  break;
    case 0x0a:/*SLTI*/   r[rt]=r[rs]<(short)imm;  break;
    case 0x0b:/*SLTIU*/  u[rt]=u[rs]<(unsigned int)(short)imm; break;
    case 0x0c:/*ANDI*/   r[rt]=r[rs]&imm;         break;
    case 0x0d:/*ORI*/    r[rt]=r[rs]|imm;         break;
    case 0x0e:/*XORI*/   r[rt]=r[rs]^imm;         break;
    case 0x0f:/*LUI*/    r[rt]=(imm<<16);         break;
    case 0x10:/*COP0*/
        if((opcode & (1<<23)) == 0){  //move from CP0
            if(rd == 12){
                r[rt]=s->status;
            }
            else if(rd == 13){
                r[rt]=s->cp0_cause;
            }
            else{
                r[rt]=s->epc;
            }
        }
        else{                         //move to CP0
            s->status=r[rt]&1;
            if(s->processId && (r[rt]&2)){
                s->userMode|=r[rt]&2;
                //printf("CpuStatus=%d %d %d\n", r[rt], s->status, s->userMode);
                //s->wakeup = 1;
                //printf("pc=0x%x\n", epc);
            }
        }
        break;
//      case 0x11:/*COP1*/ break;
//      case 0x12:/*COP2*/ break;
//      case 0x13:/*COP3*/ break;
    case 0x14:/*BEQL*/  lbranch=r[rs]==r[rt];    break;
    case 0x15:/*BNEL*/  lbranch=r[rs]!=r[rt];    break;
    case 0x16:/*BLEZL*/ lbranch=r[rs]<=0;        break;
    case 0x17:/*BGTZL*/ lbranch=r[rs]>0;         break;
//      case 0x1c:/*MAD*/  break;   /*IV*/
    case 0x20:/*LB*/    //r[rt]=(signed char)mem_read(s,1,ptr,1);  break;
                        start_load(s, rt,(signed char)mem_read(s,1,ptr,1));
                        break;
 
    case 0x21:/*LH*/    //r[rt]=(signed short)mem_read(s,2,ptr,1); break;
                        start_load(s, rt, (signed short)mem_read(s,2,ptr,1));
                        break;
    case 0x22:/*LWL*/   //target=8*(ptr&3);
                        //r[rt]=(r[rt]&~(0xffffffff<<target))|
                        //      (mem_read(s,4,ptr&~3)<<target); break;
                        break;
    case 0x23:/*LW*/    //r[rt]=mem_read(s,4,ptr,1);   break;
                        start_load(s, rt, mem_read(s,4,ptr,1));
                        break;
    case 0x24:/*LBU*/   //r[rt]=(unsigned char)mem_read(s,1,ptr,1); break;
                        start_load(s, rt, (unsigned char)mem_read(s,1,ptr,1));
                        break;
    case 0x25:/*LHU*/   //r[rt]= (unsigned short)mem_read(s,2,ptr,1);
                        start_load(s, rt, (unsigned short)mem_read(s,2,ptr,1));
                        break;
    case 0x26:/*LWR*/   //target=32-8*(ptr&3);
                        //r[rt]=(r[rt]&~((unsigned int)0xffffffff>>target))|
                        //((unsigned int)mem_read(s,4,ptr&~3)>>target);
                        break;
    case 0x28:/*SB*/    mem_write(s,1,ptr,r[rt],1);  break;
    case 0x29:/*SH*/    mem_write(s,2,ptr,r[rt],1);  break;
    case 0x2a:/*SWL*/   //mem_write(s,1,ptr,r[rt]>>24);
                        //mem_write(s,1,ptr+1,r[rt]>>16);
                        //mem_write(s,1,ptr+2,r[rt]>>8);
                        //mem_write(s,1,ptr+3,r[rt]); break;
    case 0x2b:/*SW*/    mem_write(s,4,ptr,r[rt],1);  break;
    case 0x2e:/*SWR*/   break; //FIXME
    case 0x2f:/*CACHE*/ break;
    case 0x30:/*LL*/    //r[rt]=mem_read(s,4,ptr);   break;
                        start_load(s, rt, mem_read(s,4,ptr,1));
                        break;
//      case 0x31:/*LWC1*/ break;
//      case 0x32:/*LWC2*/ break;
//      case 0x33:/*LWC3*/ break;
//      case 0x35:/*LDC1*/ break;
//      case 0x36:/*LDC2*/ break;
//      case 0x37:/*LDC3*/ break;
//      case 0x38:/*SC*/     *(int*)ptr=r[rt]; r[rt]=1; break;
    case 0x38:/*SC*/    mem_write(s,4,ptr,r[rt],1); r[rt]=1; break;
//      case 0x39:/*SWC1*/ break;
//      case 0x3a:/*SWC2*/ break;
//      case 0x3b:/*SWC3*/ break;
//      case 0x3d:/*SDC1*/ break;
//      case 0x3e:/*SDC2*/ break;
//      case 0x3f:/*SDC3*/ break;
    default:
        /* FIXME should trap unimplemented opcodes */
        printf("ERROR2 address=0x%x opcode=0x%x\n", s->pc, opcode);
        s->wakeup=1;
    }
    s->pc_next += (branch || lbranch == 1) ? imm_shift : 0;
    s->pc_next &= ~3;
    s->skip = (lbranch == 0) | skip2;
 
    /* If there was trouble (failed assertions), log it */
    if(s->failed_assertions!=0){
        log_failed_assertions(s);
        s->failed_assertions=0;
    }
 
    /* if there's a delayed load pending, do it now: load reg with memory data*/
    /* load delay slots not simulated */
 
    /* Handle exceptions */
   if(s->exceptionId){
        r[rt] = rSave;
        s->cp0_cause = (s->delay_slot & 0x1) << 31 | (trap_cause & 0x1f);
        /* adjust epc if we (i.e. the victim instruction) are in a delay slot */
        if(s->delay_slot){
        epc = epc - 4;
        }
        s->epc = epc;
        s->pc_next = 0x3c;
        s->skip = 1;
        s->exceptionId = 0;
        s->userMode = 0;
        //s->wakeup = 1;
    }
 
    /* if this instruction was any kind of branch that actually jumped, then
       the next instruction will be in a delay slot. Remember it. */
    delay_slot = ((lbranch==1) || branch || delay_slot);
    s->delay_slot = delay_slot;
}
 
/** Dump CPU state to console */
void show_state(t_state *s){
    int i,j;
    printf("pid=%d userMode=%d, epc=0x%x\n", s->processId, s->userMode, s->epc);
    printf("hi=0x%08x lo=0x%08x\n", s->hi, s->lo);
    for(i = 0; i < 4; ++i){
        printf("%2.2d ", i * 8);
        for(j = 0; j < 8; ++j){
            printf("%8.8x ", s->r[i*8+j]);
        }
        printf("\n");
    }
    //printf("%8.8lx %8.8lx %8.8lx %8.8lx\n", s->pc, s->pc_next, s->hi, s->lo);
    j = s->pc;
    for(i = -4; i <= 8; ++i){
        printf("%c", i==0 ? '*' : ' ');
        s->pc = j + i * 4;
        cycle(s, 10);
    }
    s->pc = j;
}
 
/** Show debug monitor prompt and execute user command */
void do_debug(t_state *s){
    int ch;
    int i, j=0, watch=0, addr;
    s->pc_next = s->pc + 4;
    s->skip = 0;
    s->wakeup = 0;
    show_state(s);
    ch = ' ';
    for(;;){
        if(ch != 'n'){
            if(watch){
                printf("0x%8.8x=0x%8.8x\n", watch, mem_read(s, 4, watch,0));
            }
            printf("1=Debug 2=t_trace 3=Step 4=BreakPt 5=Go 6=Memory ");
            printf("7=Watch 8=Jump 9=Quit A=dump > ");
        }
        ch = getch();
        if(ch != 'n'){
            printf("\n");
        }
        switch(ch){
        case 'a': case 'A':
            dump_trace_buffer(s); break;
        case '1': case 'd': case ' ':
            cycle(s, 0); show_state(s); break;
        case 'n':
            cycle(s, 1); break;
        case '2': case 't':
            cycle(s, 0); printf("*"); cycle(s, 10); break;
        case '3': case 's':
            printf("Count> ");
            scanf("%d", &j);
            for(i = 0; i < j; ++i){
                cycle(s, 1);
            }
            show_state(s);
            break;
        case '4': case 'b':
            printf("Line> ");
            scanf("%x", &j);
            printf("break point=0x%x\n", j);
            break;
        case '5': case 'g':
            s->wakeup = 0;
            cycle(s, 0);
            while(s->wakeup == 0){
                if(s->pc == j){
                    printf("\n\nStop: pc = 0x%08x\n\n", j);
                    break;
                }
                cycle(s, 0);
            }
            show_state(s);
            break;
        case 'G':
            s->wakeup = 0;
            cycle(s, 1);
            while(s->wakeup == 0){
                if(s->pc == j){
                    break;
                }
                cycle(s, 1);
            }
            show_state(s);
            break;
        case '6': case 'm':
            printf("Memory> ");
            scanf("%x", &j);
            for(i = 0; i < 8; ++i){
                printf("%8.8x ", mem_read(s, 4, j+i*4, 0));
            }
            printf("\n");
            break;
        case '7': case 'w':
            printf("Watch> ");
            scanf("%x", &watch);
            break;
        case '8': case 'j':
            printf("Jump> ");
            scanf("%x", &addr);
            s->pc = addr;
            s->pc_next = addr + 4;
            show_state(s);
            break;
        case '9': case 'q':
            return;
        }
    }
}
 
/** Read binary code and data files */
int read_program(t_state *s, uint32_t num_files, char **file_names){
    FILE *in;
    uint32_t bytes, i, j, files_read=0;
 
    for(i=0;i<NUM_MEM_BLOCKS;i++){
        if(i<num_files){
            in = fopen(file_names[i], "rb");
            if(in == NULL){
                for(j=0;j<i;j++){
                    free(s->blocks[j].mem);
                }
                printf("Can't open file %s, quitting!\n",file_names[i]);
                getch();
                return(2);
            }
 
            s->blocks[i].mem = (unsigned char*)malloc(s->blocks[i].size);
 
            if(s->blocks[i].mem == NULL){
                for(j=0;j<i;j++){
                    free(s->blocks[j].mem);
                }
                printf("Can't allocate %d bytes, quitting!\n",
                        s->blocks[i].size);
                getch();
                return(2);
            }
 
            memset(s->blocks[i].mem, 0, s->blocks[i].size);
 
            bytes = fread(s->blocks[i].mem, 1, s->blocks[i].size, in);
            fclose(in);
            printf("%-16s [size= %6d, start= 0x%08x]\n",
                    s->blocks[i].name,
                    bytes,
                    s->blocks[i].start);
            files_read++;
        }
        else{
            break;
        }
    }
 
    if(!files_read){
        printf("No binary object files read, quitting\n");
    }
    else{
        for(i=files_read;i<NUM_MEM_BLOCKS;i++){
            s->blocks[i].mem = (unsigned char*)malloc(s->blocks[i].size);
 
            if(s->blocks[i].mem == NULL){
                for(j=0;j<i;j++){
                    free(s->blocks[j].mem);
                }
                printf("Can't allocate %d bytes, quitting!\n",
                        s->blocks[i].size);
                getch();
                return(2);
            }
        }
    }
 
    return 0;
}
 
/*----------------------------------------------------------------------------*/
 
int main(int argc,char *argv[]){
    t_state state, *s=&state;
 
    printf("MIPS-I emulator\n");
    init_cpu(s);
 
    /* do a minimal check on args */
    if(argc==3 || argc==2){
        /* */
    }
    else{
        printf("Usage:");
        printf("    slite file.exe <bin code file> [<bin data file>]\n");
        return 0;
    }
 
    if(read_program(s, argc-1, &(argv[1]))){
        return 2;
    }
 
    init_trace_buffer(s, "sw_sim_log.txt");
 
    /* NOTE: Original mlite supported loading little-endian code, which this
      program doesn't. The endianess-conversion code has been removed.
    */
 
    /* Simulate a CPU reset */
    reset_cpu(s);
 
    /* Enter debug command interface; will only exit clean with user command */
    do_debug(s);
 
    /* Close and deallocate everything and quit */
    close_trace_buffer(s);
    free_cpu(s);
    return(0);
}
 
/*----------------------------------------------------------------------------*/
 
 
void init_trace_buffer(t_state *s, const char *log_file_name){
    int i;
 
#if FILE_LOGGING_DISABLED
    s->t.log = NULL;
    return;
#else
    for(i=0;i<TRACE_BUFFER_SIZE;i++){
        s->t.buf[i]=0xffffffff;
    }
    s->t.next = 0;
 
    /* if file logging is enabled, open log file */
    if(log_file_name!=NULL){
        s->t.log = fopen(log_file_name, "w");
        if(s->t.log==NULL){
            printf("Error opening log file '%s', file logging disabled\n",
                    log_file_name);
        }
    }
    else{
        s->t.log = NULL;
    }
#endif
}
 
/** Dumps last jump targets as a chunk of hex numbers (older is left top) */
void dump_trace_buffer(t_state *s){
    int i, col;
 
    for(i=0, col=0;i<TRACE_BUFFER_SIZE;i++, col++){
        printf("%08x ", s->t.buf[s->t.next + i]);
        if((col % 8)==7){
            printf("\n");
        }
    }
}
 
/** Logs last cycle's activity (changes in state and/or loads/stores) */
void log_cycle(t_state *s){
    static unsigned int last_pc = 0;
    int i;
 
    /* store PC in trace buffer only if there was a jump */
    if(s->pc != (last_pc+4)){
        s->t.buf[s->t.next] = s->pc;
        s->t.next = (s->t.next + 1) % TRACE_BUFFER_SIZE;
    }
    last_pc = s->pc;
 
    /* if file logging is enabled, dump a trace log to file */
    if(s->t.log!=NULL){
        for(i=0;i<32;i++){
            if(s->t.pr[i] != s->r[i]){
                fprintf(s->t.log, "(%08X) [%02X]=%08X\n", s->pc, i, s->r[i]);
            }
            s->t.pr[i] = s->r[i];
        }
        if(s->lo != s->t.lo){
            fprintf(s->t.log, "(%08X) [LO]=%08X\n", s->pc, s->lo);
        }
        s->t.lo = s->lo;
 
        if(s->hi != s->t.hi){
            fprintf(s->t.log, "(%08X) [HI]=%08X\n", s->pc, s->hi);
        }
        s->t.hi = s->hi;
 
        if(s->epc != s->t.epc){
            fprintf(s->t.log, "(%08X) [EP]=%08X\n", s->pc, s->epc);
        }
        s->t.epc = s->epc;
    }
}
 
/** Frees debug buffers and closes log file */
void close_trace_buffer(t_state *s){
    if(s->t.log){
        fclose(s->t.log);
    }
}
 
/** Logs a message for each failed assertion, each in a line */
void log_failed_assertions(t_state *s){
    unsigned bitmap = s->failed_assertions;
    int i = 0;
 
    /* This loop will crash the program if the message table is too short...*/
    if(s->t.log != NULL){
        for(i=0;i<32;i++){
            if(bitmap & 0x1){
                fprintf(s->t.log, "ASSERTION FAILED: [%08x] %s\n",
                        s->faulty_address,
                        assertion_messages[i]);
            }
            bitmap = bitmap >> 1;
        }
    }
}
 
void free_cpu(t_state *s){
    int i;
 
    for(i=0;i<NUM_MEM_BLOCKS;i++){
        free(s->blocks[i].mem);
        s->blocks[i].mem = NULL;
 
    }
}
 
void reset_cpu(t_state *s){
    s->pc = VECTOR_RESET;     /* reset start vector */
    s->delay_slot = 0;
    s->failed_assertions = 0; /* no failed assertions pending */
}
 
void init_cpu(t_state *s){
    int i;
    memset(s, 0, sizeof(t_state));
    s->big_endian = 1;
    for(i=0;i<NUM_MEM_BLOCKS;i++){
        s->blocks[i].start =  default_blocks[i].start;
        s->blocks[i].size =  default_blocks[i].size;
        s->blocks[i].name =  default_blocks[i].name;
        s->blocks[i].mem = NULL;
    }
}
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.