URL
https://opencores.org/ocsvn/ion/ion/trunk
Subversion Repositories ion
[/] [ion/] [trunk/] [vhdl/] [tb/] [mips_tb.vhdl] - Rev 231
Go to most recent revision | Compare with Previous | Blame | View Log
--############################################################################## -- Simulation test bench -- not synthesizable. -- -- Simulates the MCU core connected to a simulated external static RAM on a -- 16-bit bus, plus an optional 8-bit static ROM. This setup is more or less -- that of develoment board DE-1 from Terasic. -------------------------------------------------------------------------------- -- Simulated I/O -- Apart from the io devices within the SoC module, this test bench simulates -- the following ports: -- -- 20010000: HW IRQ 0 countdown register (R/o). -- 20010004: HW IRQ 1 countdown register (R/o). -- 20010008: HW IRQ 2 countdown register (R/o). -- 2001000c: HW IRQ 3 countdown register (R/o). -- 20010010: HW IRQ 4 countdown register (R/o). -- 20010014: HW IRQ 5 countdown register (R/o). -- 20010018: HW IRQ 6 countdown register (R/o). -- 2001001c: HW IRQ 7 countdown register (R/o). -- 20010020: Debug register 0 (R/W). -- 20010024: Debug register 1 (R/W). -- 20010028: Debug register 2 (R/W). -- 2001002c: Debug register 3 (R/W). -- -- NOTE: these addresses are for write accesses only. for read accesses, the -- debug registers 0..3 are mirrored over all the io address range 2001xxxxh. -- -- Writing N to an IRQ X countdown register will trigger hardware interrupt X -- N clock cycles later. The interrupt line will be asserted for 1 clock cycle. -- -- The debug registers 0 to 3 can only be used to test 32-bit i/o. -- All of these registers can only be addressed as 32-bit words. Any other type -- of access will yield undefined results. -------------------------------------------------------------------------------- -- Console logging: -- -- Console output (at addresses compatible to Plasma's) is logged to text file -- "hw_sim_console_log.txt". -- -- IMPORTANT: The code that echoes UART TX data to the simulation console does -- line buffering; it will not print anything until it gets a CR (0x0d), and -- will ifnore LFs (0x0a). Bear this in mind if you see no output when you -- expect it. -- -- Console logging is done by monitoring CPU writes to the UART, NOT by looking -- at the TxD pin. It will NOT catch baud-related problems, etc. -------------------------------------------------------------------------------- -- WARNING: Will only work on Modelsim; uses custom library SignalSpy. --############################################################################## library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; use std.textio.all; use work.txt_util.all; use work.mips_pkg.all; use work.mips_tb_pkg.all; use work.sim_params_pkg.all; entity mips_tb is end; architecture testbench of mips_tb is -- External 16-bit SRAM and interface signals ---------------------------------- -- External SRAM address length -- these are 16-bit word addresses. constant SRAM_ADDR_SIZE : integer := log2(SRAM_SIZE); -- Static 16-bit wide RAM. -- Using shared variables for big memory arrays speeds up simulation a lot; -- see Modelsim 6.3 User Manual, section on 'Modelling Memory'. -- WARNING: I have only tested this construct with Modelsim SE 6.3. shared variable sram : t_hword_table(0 to SRAM_SIZE-1) := objcode_to_htable(SRAM_INIT, SRAM_SIZE); signal sram_chip_addr : std_logic_vector(SRAM_ADDR_SIZE downto 1); signal sram_output : t_halfword; -- PROM table and interface signals -------------------------------------------- constant PROM_ADDR_SIZE : integer := log2(PROM_SIZE); subtype t_prom_address is std_logic_vector(PROM_ADDR_SIZE-1 downto 0); -- We'll simulate a 16-bit-wide static PROM (e.g. a Flash) with some serious -- cycle time (70 or 90 ns). -- FIXME FLASH read cycle time not modelled yet. signal prom_rd_addr : t_prom_address; signal prom_output : t_byte; signal prom_oe_n : std_logic; -- 8-bit wide FLASH modelled as read only block. -- We don't simulate the actual FLASH chip: no FLASH writes, control regs, etc. shared variable prom : t_byte_table(0 to PROM_SIZE-1) := objcode_to_btable(PROM_INIT, PROM_SIZE); -- I/O devices ----------------------------------------------------------------- signal data_uart : std_logic_vector(31 downto 0); signal data_uart_status : std_logic_vector(31 downto 0); signal uart_tx_rdy : std_logic := '1'; signal uart_rx_rdy : std_logic := '1'; -------------------------------------------------------------------------------- signal clk : std_logic := '0'; signal reset : std_logic := '1'; signal interrupt : std_logic := '0'; signal done : std_logic := '0'; -- interface to asynchronous 16-bit-wide external SRAM signal mpu_sram_address : std_logic_vector(31 downto 0); signal mpu_sram_data_rd : t_halfword; signal mpu_sram_data_wr : t_halfword; signal mpu_sram_byte_we_n : std_logic_vector(1 downto 0); signal mpu_sram_oe_n : std_logic; -- interface to i/o signal io_rd_data : std_logic_vector(31 downto 0); signal io_wr_data : std_logic_vector(31 downto 0); signal io_rd_addr : std_logic_vector(31 downto 2); signal io_wr_addr : std_logic_vector(31 downto 2); signal io_rd_vma : std_logic; signal io_byte_we : std_logic_vector(3 downto 0); signal rxd : std_logic; signal txd : std_logic; -- Other CPU signals signal cpu_irq : std_logic_vector(7 downto 0); -------------------------------------------------------------------------------- -- Logging signals -- Log file file log_file: TEXT open write_mode is "hw_sim_log.txt"; -- Console output log file file con_file: TEXT open write_mode is "hw_sim_console_log.txt"; -- All the info needed by the logger is here signal log_info : t_log_info; -- IRQ trigger simulation ------------------------------------------------------ signal irq_trigger_addr : std_logic_vector(2 downto 0); signal irq_trigger_data : std_logic_vector(31 downto 0); signal irq_trigger_load : std_logic; subtype t_irq_countdown is std_logic_vector(31 downto 0); type t_irq_countdown_array is array(0 to 7) of t_irq_countdown; signal irq_countdown : t_irq_countdown_array; -- Simulated block of 4 read/write, 32-bit I/O registers, used in cache test. type t_debug_reg_block is array(0 to 3) of t_word; signal debug_reg_block : t_debug_reg_block; begin -- UUT instantiation ------------------------------------------------------- mpu: entity work.mips_soc generic map ( BOOT_BRAM_SIZE => bram_size, OBJ_CODE => obj_code, CLOCK_FREQ => 50000000, SRAM_ADDR_SIZE => 32 ) port map ( interrupt => cpu_irq, -- interface to FPGA i/o devices io_rd_data => io_rd_data, io_rd_addr => io_rd_addr, io_wr_addr => io_wr_addr, io_wr_data => io_wr_data, io_rd_vma => io_rd_vma, io_byte_we => io_byte_we, -- interface to asynchronous 16-bit-wide EXTERNAL SRAM sram_address => mpu_sram_address, sram_data_rd => mpu_sram_data_rd, sram_data_wr => mpu_sram_data_wr, sram_byte_we_n => mpu_sram_byte_we_n, sram_oe_n => mpu_sram_oe_n, uart_rxd => rxd, uart_txd => txd, debug_info => OPEN, clk => clk, reset => reset ); -- Master clock: free running clock used as main module clock -------------- run_master_clock: process(done, clk) begin if done = '0' then clk <= not clk after T/2; end if; end process run_master_clock; -- Main simulation process: reset MCU and wait for fixed period ------------ drive_uut: process variable l : line; begin wait for T*4; reset <= '0'; wait for T*SIMULATION_LENGTH; -- Flush console output to log console file (in case the end of the -- simulation caugh an unterminated line in the buffer) if log_info.con_line_ix > 1 then write(l, log_info.con_line_buf(1 to log_info.con_line_ix)); writeline(con_file, l); end if; print("TB finished"); done <= '1'; wait; end process drive_uut; -- SRAM/FLASH mux (on a real board this would be a simple address decoder) mpu_sram_data_rd <= X"00" & prom_output when mpu_sram_address(31 downto 27)="10110" else sram_output; -- Do a very basic simulation of an external SRAM -------------------------- sram_chip_addr <= mpu_sram_address(SRAM_ADDR_SIZE downto 1); -- FIXME should add some verification of /WE sram_output <= sram(conv_integer(unsigned(sram_chip_addr))) when mpu_sram_oe_n='0' else (others => 'Z'); simulated_sram_write: process(mpu_sram_byte_we_n, mpu_sram_address, mpu_sram_oe_n) begin -- Write cycle -- FIXME should add OE\ to write control logic if mpu_sram_byte_we_n'event or mpu_sram_address'event then if mpu_sram_byte_we_n(1)='0' then sram(conv_integer(unsigned(sram_chip_addr)))(15 downto 8) := mpu_sram_data_wr(15 downto 8); end if; if mpu_sram_byte_we_n(0)='0' then sram(conv_integer(unsigned(sram_chip_addr)))( 7 downto 0) := mpu_sram_data_wr( 7 downto 0); end if; end if; end process simulated_sram_write; -- Do a very basic simulation of an external PROM (FLASH) ------------------ -- (wired to the same bus as the sram and both are static). prom_rd_addr <= mpu_sram_address(PROM_ADDR_SIZE-1 downto 0); prom_oe_n <= mpu_sram_oe_n; simulated_flash: if PROM_SIZE > 0 generate prom_output <= prom(conv_integer(unsigned(prom_rd_addr))) when prom_oe_n='0' else (others => 'Z'); end generate; unused_flash: if PROM_SIZE <= 0 generate prom_output <= (others => 'Z'); end generate; -- Simulate dummy I/O traffic external to the MCU -------------------------- -- The only IO present is the test interrupt trigger registers and the -- debug register block. simulated_io: process(clk) variable i : integer; variable uart_data : integer; begin if clk'event and clk='1' then if io_byte_we /= "0000" then if io_wr_addr(31 downto 16)=X"2001" then if io_wr_addr(5)='0' then -- IRQ trigger register block (write only) irq_trigger_load <= '1'; irq_trigger_data <= io_wr_data; irq_trigger_addr <= io_wr_addr(4 downto 2); else -- Debug register block (read/write) debug_reg_block(conv_integer(unsigned(io_wr_addr(3 downto 2)))) <= io_wr_data; end if; else irq_trigger_load <= '0'; end if; else irq_trigger_load <= '0'; end if; end if; end process simulated_io; -- The only readable i/o is the debug reg block. We simulate an asynchronous -- read port (a mux). -- For read accesses, this register block is mirrored all over the io --- address space 2001xxxxh. io_rd_data <= debug_reg_block(conv_integer(unsigned(io_rd_addr(3 downto 2)))); -- Simulate IRQs ----------------------------------------------------------- irq_trigger_registers: process(clk) variable index : integer range 0 to 7; begin if clk'event and clk='1' then if reset='1' then cpu_irq <= "00000000"; else if irq_trigger_load='1' then index := conv_integer(irq_trigger_addr); irq_countdown(index) <= irq_trigger_data; else for index in 0 to 7 loop if irq_countdown(index) = X"00000001" then cpu_irq(index) <= '1'; irq_countdown(index) <= irq_countdown(index) - 1; elsif irq_countdown(index)/=X"00000000" then irq_countdown(index) <= irq_countdown(index) - 1; cpu_irq(index) <= '0'; else cpu_irq(index) <= '0'; end if; end loop; end if; end if; end if; end process irq_trigger_registers; -- This is useless (the simulated UART will not be actually used) -- but at least prevents the simulator from optimizing the logic away. rxd <= txd; -- Logging process: launch logger function --------------------------------- log_execution: process begin log_cpu_activity(clk, reset, done, "mips_tb/mpu", "cpu", log_info, "log_info", LOG_TRIGGER_ADDRESS, log_file, con_file); wait; end process log_execution; end architecture testbench;
Go to most recent revision | Compare with Previous | Blame | View Log