URL
https://opencores.org/ocsvn/jart/jart/trunk
Subversion Repositories jart
[/] [jart/] [trunk/] [BL00/] [block00.vhd] - Rev 2
Go to most recent revision | Compare with Previous | Blame | View Log
-- Author : Julian Andres Guarin Reyes. -- Project : JART, Just Another Ray Tracer. -- This code was entirely written by Julian Andres Guarin Reyes. -- The following code is licensed under GNU Public License -- http://www.gnu.org/licenses/gpl-3.0.txt. -- This file is part of JART (Just Another Ray Tracer). -- JART (Just Another Ray Tracer) is free software: you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation, either version 3 of the License, or -- (at your option) any later version. -- JART (Just Another Ray Tracer) is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- You should have received a copy of the GNU General Public License -- along with JART (Just Another Ray Tracer). If not, see <http://www.gnu.org/licenses/>. -- The following HDL is a dot product calculator. V and D are the vectors to be processed. -- Vx,Vy,Vz,Dx,Dy,Dz are the vectors components. -- vn_A7_10, vn_A7_10 are both signed fixed representations of vectorial components where 7 bits are for the integer part and -- 10 bits are for the decimal part. -- vd_A15_16 is the signed fixed representation of the V and D dot product operation, where 15 bits are for the integer part and -- 16 bits are for the decimal part. library ieee; use ieee.std_logic_1164.all; -- Fixed Point Representation : -- -- A(7,10) signed 18 bits fixed point representation : -- 1 bit for sign -- 7 bits for integer part (128) numbers. -- 10 bits for decimal part (1024) numbers. -- Representation Range = -128, 128-(1/1024) -- Decimal part Resolution : 1/1024 = 0.00098 aprox, 0.001 entity bl00 is port ( -- <vx, vy, vz> y <dx, dy, dz> fixed point A(7,10) => 18 bits de representacion. vx_A7_10 : in std_logic_vector (17 downto 0); vy_A7_10 : in std_logic_vector (17 downto 0); vz_A7_10 : in std_logic_vector (17 downto 0); dx_A7_10 : in std_logic_vector (17 downto 0); dy_A7_10 : in std_logic_vector (17 downto 0); dz_A7_10 : in std_logic_vector (17 downto 0); -- <vxdx + vydy + vzdz> fixed point A(15,6) => 32 bits de representacion. vd_A15_16 : out std_logic_vector (31 downto 0) ); end entity; architecture rtl of bl00 is signal px : std_logic_vector (31 downto 0); -- Producto A(15,20), se trunca despues a A(15,16) signal py : std_logic_vector (31 downto 0); -- Producto A(15,20), se trunca despues a A(15,16) signal pz : std_logic_vector (31 downto 0); -- Producto A(15,20), se trunca despues a A(15,16) signal s0 : std_logic_vector (31 downto 0); -- Suma : A(15,16) + A(15,16) = A(15,16) = 31 bits de representacion. component mult_A15_20 port ( dataa : in std_logic_vector(17 downto 0); datab : in std_logic_vector(17 downto 0); result : out std_logic_vector (35 downto 0) ); end component; component add_A15_16 port ( dataa : in std_logic_vector (31 downto 0); datab : in std_logic_vector (31 downto 0); result : out std_logic_vector(31 downto 0) ); end component; begin -- Productos, trunco de una vez 4 bits para performance y espacio. vxdx : mult_A15_20 port map (dataa=>vx_A7_10, datab=> dx_A7_10, result(35 downto 4) => px); vydy : mult_A15_20 port map (dataa=>vy_A7_10, datab=> dy_A7_10, result(35 downto 4) => py); vzdz : mult_A15_20 port map (dataa=>vz_A7_10, datab=> dz_A7_10, result(35 downto 4) => pz); -- Sumas de 32 bits A(21,10). add0 : add_A15_16 port map (dataa=> px, datab => py , result=>s0(31 downto 0)); add1 : add_A15_16 port map (dataa=> s0, datab => pz , result=>vd_A15_16(31 downto 0)); end rtl;
Go to most recent revision | Compare with Previous | Blame | View Log