URL
https://opencores.org/ocsvn/light8080/light8080/trunk
Subversion Repositories light8080
[/] [light8080/] [trunk/] [ucode/] [light8080.m80] - Rev 82
Go to most recent revision | Compare with Previous | Blame | View Log
////////////////////////////////////////////////////////////////////////////////
// LIGHT8080 CORE MICROCODE (V.2 February 12th 2012)
////////////////////////////////////////////////////////////////////////////////
// NOTE: Except for bug fixing, there's no need to tinker with the microcode.
// Once the microcode table has been generated, this file is is not needed to
// synthesize or use the core.
////////////////////////////////////////////////////////////////////////////////
//
// ***** FORMAT AND OPERATION:
//
// operation 1 ; operation 2 ; flags
//
// Operation 1 sets up the ALU input registers; operation 2 takes the ALU result
// and writes it back somewhere; and the flags group all other microinstruction
// control signals.
//
// For any given microinstruction, operation 2 takes place in the cycle after
// operation 1. It happens concurrently with the next microinstruction's
// operation 1, so whenever a register is written to in an operation 2 it will
// NOT be available for the next microinstruction.
//
// In operation 1, you may load any one of T1 or T2 from the register bank or
// from DI which is simply the unregistered signal data_in.
//
// In operation 2, you specify the ALU operation and assign the ALU result to
// the register bank or the register DO, which feeds the signal data_out.
//
// You cannot address two different registers from the register bank in
// operations 1 and 2 (see the design notes on this).
//
// *** Some other elements found in the microcode source:
//
// labels: must be in a line by themselves, otherwise work like any assembler.
// __code pragmas: used by assembler to automatically generate the decode table.
// __asm pragmas: not used, but can be handy as a reference.
//
//
// ***** FLAGS:
//
// Note: '1st cycle' and '2nd cycle' denote both cycles of the present
// microinstruction (m.i.); cycle 2 of m.i. N overlaps cycle 1 of m.i. N+1.
//
// #ld_al : Load AL register with register bank output as read by operation 1.
// (used in memory and io access).
// #ld_addr : Load address register (H byte = register bank output as read by
// operation 1, L byte = AL).
// Activate vma signal for 1st cycle.
// #auxcy : Use aux carry instead of regular carry for this operation.
// #setacy : Set aux carry at the start of 1st cycle (used for ++).
// #end : Jump to microinstruction address 3 after the present m.i.
// #ret : Jump to address saved by the last JST or TJSR m.i.
// #rd : Activate rd signal for the 2nd cycle.
// #wr : Activate wr signal for the 2nd cycle.
// #fp_r : This microinstruction updates all PSW flags except for C.
// #fp_c : This microinstruction updates only the C flag in the PSW.
// #fp_rc : This microinstruction updates all the flags in the PSW.
// #clrt1 : Clear T1 at the end of 1st cycle.
// #io : Activate io signal for 1st cycle.
// #ei : Set interrupt enable register.
// #di : Reset interrupt enable register.
// #halt : Jump to microcode address 0x07 without saving return value.
//
////////////////////////////////////////////////////////////////////////////////
// V.1 November 1st 2007 -- Original version
// V.2 February 12th 2012 -- Fixed CY/AC clear bug with clr_acy flag
////////////////////////////////////////////////////////////////////////////////
// RESET ucode: from 0 to 2, but uinst at address 0 is never executed
__reset
NOP ; NOP
NOP ; _pl = AND ; // T1 & T2 = 0x00
NOP ; _ph = AND ; // T1 & T2 = 0x00
// FETCH ucode: from 3 to 6
// (executed in INTA cycles too, with pc increment inhibited to preserve PC)
__fetch
T1 = _pl ; _pl = ADC ; #ld_al, #auxcy, #setacy
T1 = _ph ; _ph = ADC ; #ld_addr, #rd, #auxcy
NOP ; NOP ; #decode
// free uinst slot
NOP ; NOP ;
// HALT ucode: address 7
__halt
NOP ; NOP ; #halt, #end
// NOTE: ALU single_operand ops work on T1
// ALU 2-operands work with 'A' on T2 (e.g. SUB == T2 - T1)
__code "01dddsss"
__asm MOV {d},{s}
T1 = {s} ; NOP
NOP ; {d} = T1 ; #end
__code "01ddd110"
__asm MOV {d},M
JSR read_m ;
NOP ; {d} = T1 ; #end
__code "01110sss"
__asm MOV M,{s}
T1 = {s} ; DO = T1
JSR write_m // does not return
__code "00ddd110"
__asm MVI {d},#imm
JSR read_imm
NOP ; {d} = T1 ; #end
__code "00110110"
__asm MVI M,#imm
JSR read_imm
JSR write_m
__code "00pp0001"
__asm LXI [p]
JSR read_imm
NOP ; {p}1 = T1
JSR read_imm
NOP ; {p}0 = T1 ; #end
__code "00111010"
__asm LDA addr
JSR read_imm_wz
JSR read_wz
NOP ; _a = T1 ; #end
__code "00110010"
__asm STA addr
JSR read_imm_wz
T1 = _a ; DO = T1 ;
JSR write_wz //does not return
__code "00101010"
__asm LHLD
JSR read_imm_wz
T1 = _z ; _z = ADC ; #ld_al, #auxcy, #setacy // L = (WZ++)
T1 = _w ; _w = ADC ; #ld_addr, #rd, #auxcy
T1 = DI ; _l = T1
JSR read_wz // H = (WZ)
NOP ; _h = T1 ; #end
__code "00100010"
__asm SHLD
JSR read_imm_wz
T1 = _l ; DO = T1
T1 = _z ; _z = ADC ; #ld_al, #auxcy, #setacy
T1 = _w ; _w = ADC ; #ld_addr, #wr, #auxcy
T1 = _h ; DO = T1
JSR write_wz
__code "00pp1010"
__asm LDAX [p]
JSR read_p
NOP ; _a = T1 ; #end
__code "00pp0010"
__asm STAX [p]
T1 = _a ; DO = T1
JSR write_p
__code "11101011"
__asm XCHG
// 16 T cycles vs. 10 for the original 8080...
T1 = _d ; NOP
NOP ; _x = T1
T1 = _e ; NOP
NOP ; _y = T1
T1 = _h ; NOP
NOP ; _d = T1
T1 = _l ; NOP
NOP ; _e = T1
T1 = _x ; NOP
NOP ; _h = T1
T1 = _y ; NOP
NOP ; _l = T1 ; #end
__code "11000110"
__asm ADI #imm
JSR read_imm
T2 = _a ; _a = ADD ; #end, #fp_rc
__code "11001110"
__asm ACI #imm
JSR read_imm
T2 = _a ; _a = ADC ; #end, #fp_rc
__code "11010110"
__asm SUI #imm
JSR read_imm
T2 = _a ; _a = SUB ; #end, #fp_rc
__code "11011110"
__asm SBI #imm
JSR read_imm
T2 = _a ; _a = SBB ; #end, #fp_rc
__code "11100110"
__asm ANI #imm
JSR read_imm
T2 = _a ; _a = AND ; #end, #fp_rc, #clr_acy
__code "11101110"
__asm XRI #imm
JSR read_imm
T2 = _a ; _a = XRL ; #end, #fp_rc, #clr_acy
__code "11110110"
__asm ORI #imm
JSR read_imm
T2 = _a ; _a = ORL ; #end, #fp_rc, #clr_acy
__code "11111110"
__asm CPI #imm
JSR read_imm
T2 = _a ; DO = SUB ; #end, #fp_rc
__code "10000sss"
__asm ADD {s}
T1 = {s} ; NOP
T2 = _a ; _a = ADD ; #end, #fp_rc
__code "10001sss"
__asm ADC {s}
T1 = {s} ; NOP
T2 = _a ; _a = ADC ; #end, #fp_rc
__code "10010sss"
__asm SUB {s}
T1 = {s} ; NOP
T2 = _a ; _a = SUB ; #end, #fp_rc
__code "10011sss"
__asm SBB {s}
T1 = {s} ; NOP
T2 = _a ; _a = SBB ; #end, #fp_rc
__code "10100sss"
__asm ANA {s}
T1 = {s} ; NOP
T2 = _a ; _a = AND ; #end, #fp_rc, #clr_acy
__code "10101sss"
__asm XRA {s}
T1 = {s} ; NOP
T2 = _a ; _a = XRL ; #end, #fp_rc, #clr_acy
__code "10110sss"
__asm ORA {s}
T1 = {s} ; NOP
T2 = _a ; _a = ORL ; #end, #fp_rc, #clr_acy
__code "10111sss"
__asm CMP {s}
T1 = {s} ; NOP
T2 = _a ; DO = SUB ; #end, #fp_rc
__code "10000110"
__asm ADD M
JSR read_m
T2 = _a ; _a = ADD ; #end, #fp_rc
__code "10001110"
__asm ADC M
JSR read_m
T2 = _a ; _a = ADC ; #end, #fp_rc
__code "10010110"
__asm SUB M
JSR read_m
T2 = _a ; _a = SUB ; #end, #fp_rc
__code "10011110"
__asm SBB M
JSR read_m
T2 = _a ; _a = SBB ; #end, #fp_rc
__code "10100110"
__asm ANA M
JSR read_m
T2 = _a ; _a = AND ; #end, #fp_rc, #clr_acy
__code "10101110"
__asm XRA M
JSR read_m
T2 = _a ; _a = XRL ; #end, #fp_rc, #clr_acy
__code "10110110"
__asm ORA M
JSR read_m
T2 = _a ; _a = ORL ; #end, #fp_rc, #clr_acy
__code "10111110"
__asm CMP M
JSR read_m
T2 = _a ; DO = SUB ; #end, #fp_rc
__code "00ddd100"
__asm INR {d}
T1 = {d} ; {d} = ADC ; #auxcy, #setacy, #fp_r
NOP ; NOP ; #end // extra line, flag clash
__code "00110100"
__asm INR M
JSR read_m
NOP ; DO = ADC ; #auxcy, #setacy, #fp_r
JSR write_m
__code "00ddd101"
__asm DCR {d}
T2 = {d} ; {d} = SBB ; #auxcy, #setacy, #fp_r
NOP ; NOP ; #end // extra line, flag clash
__code "00110101"
__asm DCR M
JSR read_m // T1 = _x = (HL); but we need it in T2!
NOP ; NOP ; #clrt1 // flag clash
T2 = _x ; DO = SBB ; #auxcy, #setacy, #fp_r
JSR write_m
__code "00pp0011"
__asm INX [p]
T1 = {p}1 ; {p}1 = ADC ; #auxcy, #setacy
T1 = {p}0 ; {p}0 = ADC ; #end, #auxcy
__code "00pp1011"
__asm DCX [p]
T2 = {p}1 ; {p}1 = SBB ; #auxcy, #setacy // T2 because SUB -> T2 - T1
T2 = {p}0 ; {p}0 = SBB ; #end, #auxcy
__code "00pp1001"
__asm DAD [p]
T2 = {p}1 ; NOP
T1 = _l ; _l = ADD ; #fp_c // we need this cy
T2 = {p}0 ; NOP ;
T1 = _h ; _h = ADC ; #end, #fp_c
__code "00100111"
__asm DAA
// DAA result is only valid after the 2nd cycle;
T1 = _a ; DO = DAA ; //DO value ignored
T1 = _a ; _a = DAA ; #end, #fp_rc
__code "00000111"
__asm RLC
T1 = _a ; _a = rla ; #end, #fp_c
__code "00001111"
__asm RRC
T1 = _a ; _a = rra ; #end, #fp_c
__code "00010111"
__asm RAL
T1 = _a ; _a = rlca ; #end, #fp_c
__code "00011111"
__asm RAR
T1 = _a ; _a = rrca ; #end, #fp_c
__code "00101111"
__asm CMA
T1 = _a ; _a = NOT ; #end
__code "00111111"
__asm CMC
NOP ; cpc ; #end, #fp_c
__code "00110111"
__asm STC
NOP ; sec ; #end, #fp_c
__code "11000011"
__asm JMP addr
JSR read_imm_wz
:jmp_addr
T1 = _z ; NOP
NOP ; _pl = T1
T1 = _w ; NOP
NOP ; _ph = T1 ; #end
__code "00000000"
__asm NOP
NOP ; NOP ; #end
__code "11ccc010"
__asm {JZ,JNZ,JC,JNC,JPO,JPE,JP,JM} addr
JSR read_imm_wz
TJSR jmp_addr // TJSR does the JSR or does #end the instruction.
__code "11001101"
__asm CALL addr
//:call_addr
JSR read_imm_wz
:call_addr //@@
T1 = _ph ; DO = T1 ; #clrt1
JSR push
T1 = _pl ; DO = T1 ; #clrt1
JSR push
T1 = _z ; NOP
NOP ; _pl = T1
T1 = _w ; NOP
NOP ; _ph = T1 ; #end
__code "11ccc100"
__asm {CZ,CNZ,CC,CNC,CPO,CPE,CP,CM} addr
JSR read_imm_wz // skip next 2 bytes
TJSR call_addr // TJSR does the JSR or does #end the instruction.
__code "11001001"
__asm RET
:ret
JSR pop
NOP ; _pl = T1
JSR pop
NOP ; _ph = T1 ; #end
__code "11ccc000"
__asm {RZ,RNZ,RC,RNC,RPO,RPE,RP,RM}
TJSR ret // TJSR does the JSR or does #end the instruction.
__code "11nnn111"
__asm {RST 0h,RST 8h,RST 10h,RST 18h,RST 20h,RST 28h,RST 30h,RST 38h}
T1 = _ph ; DO = T1 ; #clrt1
JSR push
T1 = _pl ; DO = T1 ; #clrt1
JSR push
NOP ; _pl = rst ; #clrt1
NOP ; _ph = AND ; #end // T1 & T2 = 0, because T2=0
// No extra cycle needed, _ph is not used in the next microinstruction
__code "11101001"
__asm PCHL
T1 = _l ; NOP
NOP ; _pl = T1
T1 = _h ; NOP
NOP ; _ph = T1 ; #end
__code "11pp0101" //Except for PUSH PSW
__asm PUSH [p]
T1 = {p}0 ; DO = T1 ; #clrt1 // H first...
JSR push
T1 = {p}1 ; DO = T1 ; #clrt1 // ...L last
JSR push
NOP ; NOP ; #end
__code "11110101"
__asm PUSH PSW
T1 = _a ; DO = T1 ; #clrt1
JSR push
NOP ; DO = PSW ; #clrt1
JSR push
NOP ; NOP ; #end
__code "11pp0001" //Except for POP PSW
__asm POP [p]
JSR pop
NOP ; {p}1 = T1
JSR pop
NOP ; {p}0 = T1 ; #end
__code "11110001"
__asm POP PSW
JSR pop
NOP ; _f = T1 ; #fp_rc //F<-(SP); F f-fs load automatically
JSR pop
NOP ; _a = T1 ; #end
__code "11100011"
__asm XTHL
JSR pop
NOP ; _z = T1
JSR pop
NOP ; _w = T1
T1 = _h ; DO = T1 ; #clrt1
JSR push
T1 = _l ; DO = T1 ; #clrt1
JSR push
T1 = _z ; NOP
NOP ; _l = T1
T1 = _w ; NOP
NOP ; _h = T1 ; #end
__code "11111001"
__asm SPHL
T1 = _l ; NOP
NOP ; _sl = T1
T1 = _h ; NOP
NOP ; _sh = T1 ; #end
__code "11111011"
__asm EI
NOP ; NOP ; #ei, #end
__code "11110011"
__asm DI
NOP ; NOP ; #di, #end
__code "11011011"
__asm IN port
NOP ; _w = T1 // _w = 0
JSR read_imm // T1 = port
NOP ; _z = T1 // #ld_al reads from mux...
NOP ; NOP
T1 = _z ; NOP ; #ld_al
T1 = _w ; NOP ; #ld_addr, #rd, #io
T1 = DI ; _a = T1 ; #end
// Can be reduced to 11 states by removing 1st uinst
// Then, _b might be put on high addr byte as in the original...
__code "11010011"
__asm OUT port
NOP ; _w = T1 // _w = 0, put on high byte of io address
JSR read_imm // T1 = port
NOP ; _z = T1 // #ld_al reads from mux...
T1 = _a ; DO = T1
T1 = _z ; NOP ; #ld_al
T1 = _w ; NOP ; #ld_addr, #wr, #io
NOP ; NOP ; #end
__code "01110110"
__asm HLT
//TODO doc: #halt has to be in the same cycle as #end
NOP ; NOP ; #halt, #end
//********************************************
// T1 = (HL)
:read_m
T1 = _l ; NOP ; #ld_al
T1 = _h ; NOP ; #ld_addr, #rd
T1 = DI ; _x = T1 ; #ret
// (HL) = DO, does not return
// TODO extra uinst is for wait state, which is not implemented
:write_m
T1 = _l ; NOP ; #ld_al
T1 = _h ; NOP ; #ld_addr, #wr
NOP ; NOP ; #end
// T1 = (PC++), DO = T1
// T2 must be 0 on entry
:read_imm
T1 = _pl ; _pl = ADC ; #ld_al, #auxcy, #setacy
T1 = _ph ; _ph = ADC ; #ld_addr, #rd, #auxcy
T1 = DI ; DO = T1 ; #ret
// T1 = (WZ)
:read_wz
T1 = _z ; NOP ; #ld_al
T1 = _w ; NOP ; #ld_addr, #rd
T1 = DI ; NOP ; #ret
// (WZ) = DO, does not return
// TODO extra uinst is for wait state, which is not implemented
:write_wz
T1 = _z ; NOP ; #ld_al
T1 = _w ; NOP ; #ld_addr, #wr
NOP ; NOP ; #end
// T1 = (RP)
:read_p
T1 = {p}1 ; NOP ; #ld_al
T1 = {p}0 ; NOP ; #ld_addr, #rd
T1 = DI ; NOP ; #ret
// (RP) = DO, does not return
// TODO extra uinst is for wait state, which is not implemented
:write_p
T1 = {p}1 ; NOP ; #ld_al
T1 = {p}0 ; NOP ; #ld_addr, #wr
NOP ; NOP ; #end
// WZ = imm16
:read_imm_wz
T1 = _pl ; _pl = ADC ; #ld_al, #auxcy, #setacy
T1 = _ph ; _ph = ADC ; #ld_addr, #rd, #auxcy
T1 = DI ; _z = T1
T1 = _pl ; _pl = ADC ; #ld_al, #auxcy, #setacy
T1 = _ph ; _ph = ADC ; #ld_addr, #rd, #auxcy
T1 = DI ; _w = T1 ; #ret
// push DO
// no wait cycle!
:push
T2 = _sl ; _sl = SBB ; #auxcy, #setacy
T2 = _sh ; _sh = SBB ; #auxcy
T1 = _sl ; NOP ; #ld_al
T1 = _sh ; NOP ; #ld_addr, #wr,
NOP ; NOP ; #ret // extra line, flag clash
// POP T1
:pop
T1 = _sl ; _sl = ADC ; #ld_al, #auxcy, #setacy
T1 = _sh ; _sh = ADC ; #ld_addr, #rd, #auxcy
T1 = DI ; NOP ; #ret // extra line, flag clash
// End of file
Go to most recent revision | Compare with Previous | Blame | View Log