URL
https://opencores.org/ocsvn/m65c02/m65c02/trunk
Subversion Repositories m65c02
[/] [m65c02/] [trunk/] [Src/] [RTL/] [M65C02.v] - Rev 2
Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////// // // Copyright 2012-2013 by Michael A. Morris, dba M. A. Morris & Associates // // All rights reserved. The source code contained herein is publicly released // under the terms and conditions of the GNU Lesser Public License. No part of // this source code may be reproduced or transmitted in any form or by any // means, electronic or mechanical, including photocopying, recording, or any // information storage and retrieval system in violation of the license under // which the source code is released. // // The source code contained herein is free; it may be redistributed and/or // modified in accordance with the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either version 2.1 of // the GNU Lesser General Public License, or any later version. // // The source code contained herein is freely released WITHOUT ANY WARRANTY; // without even the implied warranty of MERCHANTABILITY or FITNESS FOR A // PARTICULAR PURPOSE. (Refer to the GNU Lesser General Public License for // more details.) // // A copy of the GNU Lesser General Public License should have been received // along with the source code contained herein; if not, a copy can be obtained // by writing to: // // Free Software Foundation, Inc. // 51 Franklin Street, Fifth Floor // Boston, MA 02110-1301 USA // // Further, no use of this source code is permitted in any form or means // without inclusion of this banner prominently in any derived works. // // Michael A. Morris // Huntsville, AL // /////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps //////////////////////////////////////////////////////////////////////////////// // Company: M. A. Morris & Assoc. // Engineer: Michael A. Morris // // Create Date: 12:49:16 11/18/2012 // Design Name: WDC W65C02 Microprocessor Re-Implementation // Module Name: M65C02.v // Project Name: C:\XProjects\ISE10.1i\M65C02 // Target Devices: Generic SRAM-based FPGA // Tool versions: Xilinx ISE10.1i SP3 // // Description: // // This module provides a synthesizable implementation of a 65C02 micropro- // cessor similar to the WDC W65C02S. The original W65C02 implemented a set of // enhancements to the MOS6502 microprocessor. Two new addressing modes were // added, several existing instructions were rounded out using the new address- // ing modes, and some additional instructions were added to fill in holes pre- // in the instruction set of the MOS6502. Rockwell second sourced the W65C02, // and in the process added 4 bit-oriented instructions using 32 opcodes. WDC // released the W65816/W65802 16-bit enhancements to the W65C02. Two of the new // instructions in these processors, WAI and STP, were combined with the four // Rockwell instructions, RMBx/SMBx and BBRx/BBSx, along with the original // W65C02's instruction set to realize the W65C02S. // // The M65C02 core is a realization of the W65C02S instruction set. It is not a // cycle accurate implementation, and it does not attempt to match the idiosyn- // cratic behavior of the W65C02 or the W65C02S with respect to unused opcodes. // In the M65C02 core, all unused opcodes are realized as single byte, single // cycle NOPs. // // This module demonstrates how to incorporate the M65C02_Core.v logic module // into an application-specific implementation. The core logic incorporates // most of the logic required for a microprocessor implementation: ALU, regis- // ters, address generator, and instruction decode and sequencing. Not included // in the core logic are the memory interface, the interrupt handler, the clock // generator, and any peripherals. // // This module integrates the M65C02_Core.v module, an external memory inter- // face, a simple vectored interrupt controller, and a clock generator. The ob- // jective is a module that emulates the external interfaces of a 5C02 proces- // sor. The intent is not to develop a W65C02S replacement; an FPGA-based emu- // lation of a processor still in production and readily available is not eco- // nomically viable, or an objective of this project. (To be economically // viable, an FPGA-based implementation of a 65C02 system using the M65C02 // (or WDC's synthesizable W65C02S) must be more than just a drop-in replace- // ment of the microprocessor; it must include on-chip peripherals and addi- // tional I/O interfaces, provide extended addressing, higher performance, etc. // In other words, it must be more than just a replacement of the inexpensive // 40-pin/44-pin W65C02S microprocessor.) // // The 6502 memory interface is not particularly well suited for an FPGA-based // implementation. FPGA-based implementations prefer to use a single clock, and // the 6502 memory interface uses a two phase clocking scheme. Further, for // 6502-family peripherals which require a clock, the clock needs to be conti- // nuous and symmetric. The M65C02 core logic will be overclocked relative to // the 6502 memory interface. Thus, the memory interface controller can ensure // that the core logic and the output clocks are synchronized and continuous // and symmetric. However, this requires that any wait states needed by the ex- // ternal memory or peripherals must be inserted as integer multiples of the // external memory cycle length. This means that if there are four micro-cycles // per external memory cycle, then every requested wait state will add an addi- // tional 4 cycles to each microcycle. // // With this configuration, the external memory's access time determines the // overall performance of the M65C02. Asynchronous memories are probably the // least expensive of any of the high-speed static RAMs currently available. // Therefore, the external memory interface provided with the M65C02 will pro- // vide support for high-speed asynchronous SRAMs and Flash EPROMs. To provide // reasonable price vs. performance, a 25ns access time will be used as the // target device speed for RAM. // // A common interface provided by embedded computers is the asynchronous serial // port. To make the interface reliable, the expectation is that the external // clock input of the M65C02 will be a provided by a "baud rate" crystal oscil- // lator. The frequency expected is the commonly available 18.432 MHz. // // The Tiockp, clock to output time, of a typical FPGA capable of 100 MHz // internal operation is: 3.4ns for -5 Spartan-3AN with the IOBs configured for // LVTTL operation, 12mA drive, and fast slew rate. The input setup time with // input delay, Tiopickd, is: 3.73ns with IOB-DELAY=3. These delays, which sum // to 7.13ns, must be added to the RAM's access time to determine the external // memory cycle time: 42.13ns for a 35ns access time device. // // If the external 18.432 MHz clock is multiplied by 4 and divided by 4 to set // the external memory cycle period, the resulting period would be 54.253ns, // which satisfies the 42.13ns requirement with some margin. Therefore, the // module will use a DCM whose input frequency is provided by a 18.432 MHz // oscillator. The internally the M65C02 will operate at 73.728 MHz in a // 4 clock per microcycle configuration; the memory controller controls the // microcycle length of the M65C02. // // Dependencies: M65C02_Core.v // M65C02_MPCv4.v // M65C02_uPgm_V3a.coe (M65C02_uPgm_V3a.txt) // M65C02_Decoder_ROM.coe (M65C02_Decoder_ROM.txt) // M65C02_AddrGen.v // M65C02_ALU.v // M65C02_Bin.v // M65C02_BCD.v // // Revision: // // 0.00 12B18 MAM Initial File Creation // // 0.01 13B16 MAM Added DCM/DFS clock generator, refined port list, // and refined internal reset signal generation. // // 1.00 13B23 MAM Completed the integration and testing of the M65C02 // implementation as a standalone microprocessor. // // 2.00 13B25 MAM Pulled into the M65C02 module the Boot ROM/RAM used // for testing. The test program will be used during // testing. For a final product, the ROM/RAM can be // loaded with a Monitor or other boot program. In this // manner, all of the block RAM of the target FPGA is // used, but maximum performance can be achieved. i.e. // no clock stretching is required when running from // block RAM. To perform the internal multiplexing of // input data bus, added a dedicated chip enable for // this device, BootROM, that controls the multiplexer. // Modified the clock multiplexer, now that internal // block RAM is used for the Boot/Monitor program, so // that SYS and ROM chip enables are used for the dy- // namic clock stretching circuit. Added a nWP input to // inhibit writes to the Boot/Monitor Block RAM. // // 2.10 13B27 MAM Removed all unused logic, or RTL commented out. // // 2.20 12C02 MAM Incorporated M65C02_Core with M65C02_MPCv4 which in- // cludes built-in microcycle length control and 6502- // compatible wait state generator: Phi1O and Phi2O are // are maintained as symmetrical signals. Removed clock // stretch logic, BUFGMUX, and added four more micro- // cycle state decode signals: C4-C8. This required in- // creasing the MC vector size from 2 to 3 bits. // // 2.21 12C03 MAM Added C7 to the CE for the external memory data in- // put. Also qualified DI_IFD CEwith the Rdy input sig- // nal. // // 2.30 13F08 MAM Modified for Enso's Spartan 3A board with its 60 MHz // oscillator. Added an input for that clock, divided // the 60 MHz input by 4, and output the 15 MHz signal. // Expect Enso to connect the output of the divider to // the input clock pin of the M65C02 DCM. This mini- // mizes the amount of work needed to port the M65C02 // to his project. An accompanying change is needed to // UCF file. // // 2.40 13F17 MAM Reworked address decode to match the implementation // of the 1004-0001 M65C02 Demo Card: two 32kB RAMs, // one 512kB Flash, IO, and Boot ROM (internal Block // RAM). RAM[0] is fully mapped. Only the first 16kB of // RAM[1] is mapped. For the ROM, 12kB is mapped. The // external IO is mapped to 2kB. The last 2kB are // mapped to a Block RAM that serves to hold the Boot // Program. // // 2.71 13F20 MAM Corrected error in the generation of the Rst_M65C02 // internal reset signal. The reduction of the reset // signal shift register was previously done as an AND. // That reduction has been changed to an OR, which is // the correct vector reduction operator to generate // internal reset signal from the external nRst and the // DCM_Locked signal. // // 2.72 13H04 MAM Removed unused code. Changed the DI multiplexer into // simple OR gate. The FFs feeding into the OR gate are // forced to 0 if not selected. Changed to reset signal // for several output strobes and input registers. On // outputs, the RnW signal terminates synchronously // with the rising edge of the Wr strobe. DI_IFD is rst // if an internal data source is selected. BootIFD is // reset if an external data source is selected. // // 2.73 13H17 MAM Adapted the M16C5x Clock Generator module for use // with M65C02. Also encapsulated the interrupt handler // function in another module. // // Additional Comments: // // With regard to the W65C02S, the M65C02 microprocessor implementation differs // in a number of ways: // // 1) The instruction set is emulated, but cycle accuracy was not an // objective, and the implementation provided here makes no attempt to // to provide instruction cycles times which match those of the W65C02S // microprocessor. // // The M65C02 core provides pipelined execution and fetch operations. // This feature allows the M65C02 to reduce the number of memory cycles // required per instruction. In addition, additional address generation // logic for sequential operand fetch, program counter updates, and // stack pointer updates allows some complex instructions to reduce the // number of memory cycles required by one or two cycles. (Branches all // execute in two cycles regardless of whether the branch is taken or // not taken.) // // 2) The W65C02S provides capabilities for wait state insertion, external // DMA control, and external falling edge-edge setting of the V flag in // the processor status word. // // The M65C02 implementation provided here does not support the inser- // tion of wait states by external logic. The implementation does sup- // port the BE input signal to tri-state the signals of the processor // connecting to the bus. The BE_In input port will tri-state all of // the M65C02 processor bus signals. Since wait state insertion is not // supported, external DMA logic can not stop the M65C02 processor and // take control of the bus. The nSO port is provided to reserve a pin // for a potential future upgrade of the M65C02 to support the Set // Overflow feature found in the W65C02S. The current implementation of // the M65C02 core will have to be modified to support this function. // // 3) Like the W65C02S, the M65C02 provides a Vector Pull output pin. The // pin, nVP, is asserted by the M65C02 during the two memory cycles in // which the IRQ/NMI/BRK/RST vectors are read from ROM/RAM/Registers. // // 4) Unlike the W65C02S, the M65C02 provides four chip enable outputs to // simplify the selection of RAM, ROM, SYStem ROM, and I/O devices. // // The current implementation provides a four chip enables: CE[3:0]. // // CE[0], RAM chip enable, asserts for a 48kB range: 0x0000-0xBFFF. // CE[1], ROM chip enable, asserts for a 8kB range: 0xC000-0xDFFF. // CE[2], SYS chip enable, asserts for a 4kB range: 0xE000-0xEFFF. // CE[3], IO chip enable, asserts for a 4kB range: 0xF000-0xFFFF. // // The M65C02 also makes provisions for extended address outputs, // XA[3:0], which are intended to be used with a simple internal MMU to // allow mapping of 8kB blocks in a total address space of 4MB. // // 5) The M65C02 implements a bus interface that is not exactly a standard // implementation of the two phase 6502 memory interface. // // To address generation logic used to reduce the number of memory // cycles required per instruction is combinatorial and in series with // the output address lines. The M65C02 registers all I/O signals. The // consequence of this implementation detail is that the M65C02's // address output is delayed from its internal clock's rising edge by a // significant portion of the clock period. A synchronous output is // very much desired because it provides consistent clock to output // delay times, and it eliminates the skew in the combinatorial signal // paths of the M65C02 core's address generator. Thus, the memory // address, which in a typical 6502 is output during Phi1O, is not out- // put by the M65C02 until the start of Phi2O. // // The control signals and the output data are are similarly registered // and delayed to coincide with the delay in the address. This means // that the external memory and I/O devices must be able to operate // with signals which are only asserted during Phi2O. The reduced // operating margins means that RAMs and IO devices must be able to // reliably operate in a window of approximately 20ns. // // To use the M65C02 core in this environment, the M65C02 processor // implementation effectively shews the 6502 memory cycle by a quarter // of the cycle. There are four states in the M65C02 core's microcycle. // // C1 - Address computation cycle // C2 - Output address, data, and control signals // C3 - Deassert control, and capture input data // C4 - Execute current instruction and decode next instruction // // In this four cycle process, Phi1O is asserted during C4 and C1, and // Phi2O is asserted during C2 and C3. // // For SRAMs, it is not difficult to meet the timing requirements im- // posed by this modified 6502 memory cycle with an inexpensive device. // For ROMs, the modified 6502 memory cycle is difficult to satisfy // with devices suitable for use with a 6502, i.e. NOR Flash devices. // The minimum access times that NOR Flash devices provide is 45ns, and // the typical device requires access times of 55ns and/or 70ns. // // One objective of the M65C02 is to provide a memory interface solu- // tion to which it is easy to connect readily available memory. It is // for this reason that the CE logic is included in the implementation. // In addition, two control signals, nOE and nWr, are provided so that // external logic is not required to combine Phi2O and RnW into output // and write enable signals. // // Without implementing a wait state generator, the M65C02 requires // some means to support a slow NOR Flash memory devices. To accomplish // this without requiring external logic or extremely fast NOR Flash // devices, means that some type of internally generated clock stretch // logic is required. The M65C02 provides automatic clock stretching // logic for the IO chip enable address range. // // The FPGA clocking resources provide a glitchless clock multiplexer. // Using one of these multiplexers, the M65C02 multiplexes the internal // system clock between 73.728 MHz ClkFX clock and the 36.864 MHz Clk2X // clock. (ClkFX and Clk2X are directly related and generated in phase // from the input clock. Clk2X is used as the feedback source for the // DCM, and is in phase with ClkFX which is generated by the DFS.) // // These clock changes will be glitch free, and will demonstrate the // operation of a clocking resource of the FPGA that is seldom used. // But when accessing the 4kB of IO, the frequency and duty cycle of // the Phi1O/Phi2O two phase clock will not be held at 18.432 MHz or // 50%. The clock multiplexer logic stretches the clocks from a nominal // period equal to the period of the input clock, or 54.253ns, to a // period equal to 1.5x the period of the input clock, or 81.830ns. In // the clock multiplexer implemented, the Phi1O pulse width is un- // changed, 27.127ns, and the Phi2O pulse width is doubled, 54.253ns. // //////////////////////////////////////////////////////////////////////////////// module M65C02 #( parameter pStkPtr_Rst = 8'hFF, // SP Value after Rst parameter pIRQ_Vector = 16'hFFFE, // IRQ Vector Addrs parameter pBRK_Vector = 16'hFFFE, // Brk Vector Addrs parameter pRST_Vector = 16'hFFFC, // Reset Vector Addrs parameter pNMI_Vector = 16'hFFFA, // NMI Vector Addrs parameter pInt_Hndlr = 9'h021, // Microprogram Interrupt Handler parameter pBRK = 3'b010, // BRK #imm instruction parameter pWAI = 3'b111, // WAI Mode parameter pNOP = 8'hEA, // M65C02 Core NOP instruction parameter pROM_AddrWidth = 11, // Boot/Monitor ROM Addres Width parameter pM65C02_uPgm = "Src/M65C02_uPgm_V3a.coe", parameter pM65C02_IDec = "Src/M65C02_Decoder_ROM.coe", parameter pBootROM_File = "Src/M65C02_Tst5.txt" )( input nRst, // System Reset Input output nRstO, // Internal System Reset Output (OC w/ PU) input ClkIn, // System Clk Input output reg Phi2O, // Clock Phase 2 Output output reg Phi1O, // Clock Phase 1 Output - complement of Phi2O input nSO, // Set oVerflow: currently unimplemented input nNMI, // Non-Maskable Interrupt Request: edge sense input nIRQ, // Maskable Interrupt Request: level sense output nVP, // Vector Pull: asserted to indicate ISR taken input BE_In, // Bus Enable: tri-states address, data, control output Sync, // Synchronize: asserted during opcode fetch output nML, // Memory Lock: asserted during RMW instructions output [3:0] nCE, // Chip Enable for External RAM/ROM Memory output RnW, // Read/nWrite cycle control output signal output nWr, // External Asynchronous Bus Write Strobe output nOE, // External Asynchronous Bus inout Rdy, // Bus cycle Ready, drive low to extend cycle output [ 3:0] XA, // Extended Address Output for External Memory output [15:0] A, // External Memory Address Bus inout [ 7:0] DB, // External, Bidirectional Data Bus input nWP_In, // Internal Boot/Monitor RAM write protect output reg nWait, // Driven low by Wait instruction (ASIC-only) output reg [4:0] LED, // LED Test Register output nSel, // SPI I/F Chip Select output SCk, // SPI I/F Serial Clock output MOSI, // SPI I/F Master Out/Slave In Serial Data input MISO // SPI I/F Master In/Slave Out Serial Data ); /////////////////////////////////////////////////////////////////////////////// // // Declarations // wire Rst; // Internal reset (Clk) reg OE_nRstO; // Internal reset output (Buf_ClkIn) //wire RE_NMI; // Output pulse signal from nNMI edge detector //wire CE_NMI; // NMI latch/register clock enable //reg NMI; // NMI latch/register to hold NMI until serviced wire NMI; // NMI latch/register to hold NMI until serviced //reg nIRQ_IFD, IRQ; // External maskable interrupt request inputs wire IRQ; // External maskable interrupt request input wire Int; // Interrupt handler interrupt signal to M65C02 wire [15:0] Vector; // Interrupt handler interrupt vector to M65C02 wire Brk; // Decoded M65C02 core instruction mode - BRK reg BE_IFD; // External Bus Enable input register (IOB) wire BE; // Internal Bus Enable signal wire IRQ_Msk; // M65C02 core interrupt mask wire IntSvc; // M65C02 core interrupt service indicator wire ISR; // M65C02 core signal for signaling vector read wire Done; // M65C02 core instruction complete/fetch wire [2:0] Mode; // M65C02 core instruction mode wire RMW; // M65C02 core Read-Modify-Write indicator wire [2:0] MC; // M65C02 core microcycle wire [1:0] IO_Op; // M65C02 core I/O cycle type wire [15:0] AO; // M65C02 core Address Output wire [ 7:0] DI; // M65C02 core Data Input wire [ 7:0] DO; // M65C02 core Data Output wire C1, C2, C3, C4; // Decoded microcycle states wire C5, C6, C7, C8; // Decoded microcycle states reg [1:0] VP; // Vector read/pull pulse stretcher reg Sync_OFD; reg nML_OFD; reg RnW_OFD; wire BootROM; // Internal Block RAM/ROM for Boot/Monitor wire IO, ROM; // Address decode signals: CE[3], CE[2] wire [1:0] RAM; // Address decode signals: CE[1], CE[0] reg [ 3:0] nCE_OFD; // Decoded Chip Enable output (IOB registers) reg [ 3:0] XA_OFD; // Extended Address output (IOB registers) reg [15:0] AO_OFD; // Address Output (IOB registers) reg nOE_OFD, nWr_OFD; reg [7:0] DO_OFD; reg [7:0] DI_IFD; reg nWP; // Boot/Monitor RAM write protect reg WE_Boot; // Write Enable for the Boot/Monitor ROM reg [(pROM_AddrWidth-1):0] iAO; // Internal address pipeline register reg [7:0] iDO; // Internal output data pipeline register reg [7:0] Boot [((2**pROM_AddrWidth)-1):0]; // Boot ROM/RAM (2k x 8) reg [7:0] Boot_DO; // Boot/Monitor ROM output data (absorbed) reg [7:0] Boot_IFD; // Boot/Monitor ROM output pipeline register //////////////////////////////////////////////////////////////////////////////// // // Implementation // // Instantiate the Clk and Reset Generator Module M65C02_ClkGen ClkGen ( .nRst(nRst), .ClkIn(ClkIn), .Clk(Clk), // Clk <= (M/D) x ClkIn .Clk_UART(), // Clk_UART <= 2x ClkIn .Buf_ClkIn(Buf_ClkIn), // RefClk <= Buffered ClkIn .Rst(Rst) ); // Generate Reset output for use by external circuits always @(posedge Buf_ClkIn or posedge Rst) begin if(Rst) OE_nRstO <= #1 1; else OE_nRstO <= #1 0; end assign nRstO = ((OE_nRstO) ? 0 : 1'bZ); // // Process External NMI and maskable IRQ Interrupts // M65C02_IntHndlr #( .pRST_Vector(pRST_Vector), .pIRQ_Vector(pIRQ_Vector), .pBRK_Vector(pBRK_Vector), .pNMI_Vector(pNMI_Vector) ) IntHndlr ( .Rst(Rst), .Clk(Clk), .nNMI(nNMI), .nIRQ(nIRQ), .Mode(Mode), .IRQ_Msk(IRQ_Msk), .IntSvc(IntSvc), .Int(Int), .Vector(Vector), .NMI(NMI), .IRQ(IRQ), .Brk(Brk) ); // Synchronize BE input to Clk always @(posedge Clk or posedge Rst) BE_IFD <= #1 ((Rst) ? 0 : BE_In); assign BE = BE_IFD; // Instantiate M65C02 Core M65C02_Core #( .pStkPtr_Rst(pStkPtr_Rst), .pInt_Hndlr(pInt_Hndlr), .pM65C02_uPgm(pM65C02_uPgm), .pM65C02_IDec(pM65C02_IDec) ) uP ( .Rst(Rst), .Clk(Clk), .IRQ_Msk(IRQ_Msk), .xIRQ(IRQ), .Int(Int), .Vector(Vector), .IntSvc(IntSvc), .ISR(ISR), .Done(Done), .SC(), .Mode(Mode), .RMW(RMW), .MC(MC), .MemTyp(), .Wait(~Rdy), .Rdy(), .IO_Op(IO_Op), .AO(AO), .DI(DI), .DO(DO), .A(), .X(), .Y(), .S(), .P(), .PC(), .IR(), .OP1(), .OP2() ); // Define the Memory Cycle Strobes (1 cycle in width) assign C1 = (MC == 6); // 1st cycle of microcycle assign C2 = (MC == 7); // 2nd cycle of microcycle assign C3 = (MC == 5); // 3rd cycle of microcycle assign C4 = (MC == 4); // 4th cycle of microcycle // assign C5 = (MC == 2); // 5th cycle of microcycle (Wait State Sequence) assign C6 = (MC == 3); // 6th cycle of microcycle (Wait State Sequence) assign C7 = (MC == 1); // 7th cycle of microcycle (Wait State Sequence) assign C8 = (MC == 0); // 8th cycle of microcycle (Wait State Sequence) // Assign Phi1O and Phi2O always @(posedge Clk or posedge Rst) begin if(Rst) {Phi1O, Phi2O} <= #1 2'b01; else begin Phi1O <= #1 (C3 | C4 | C7 | C8); Phi2O <= #1 (C1 | C2 | C5 | C6); end end // Generate Chip Enables assign BootROM = (&AO[15:12] & AO[11]); // 0xF800 - 0xFFFF = 2kB (Int) assign IO = (&AO[15:12] & ~AO[11]); // 0xF000 - 0xF7FF = 2kB (Ext) assign ROM = (&AO[15:14] & ~&AO[13:12]); // 0xC000 - 0xEFFF = 12kB (Ext) assign RAM[1] = (AO[15] & ~AO[14]); // 0x8000 - 0xBFFF = 16kB (Ext) assign RAM[0] = ~AO[15]; // 0x0000 - 0x7FFF = 32kB (Ext) always @(posedge Clk) begin if(Rst) nCE_OFD <= #1 ~0; else if(C1) nCE_OFD <= #1 {~IO, ~ROM, ~RAM[1], ~RAM[0]}; end assign nCE = ((BE) ? nCE_OFD : {4{1'bZ}}); // Generate Address Output always @(posedge Clk) begin if(Rst) {XA_OFD, AO_OFD} <= #1 {{4{1'b1}}, pRST_Vector}; else {XA_OFD, AO_OFD} <= #1 {{4{AO[15]}}, AO}; end assign {XA, A} = ((BE) ? {XA_OFD, AO_OFD} : {{4{1'bZ}}, {16{1'bZ}}}); // Generate Vector Pull Output always @(posedge Clk) begin if(Rst) VP <= #1 0; else if(C4) VP <= #1 ((ISR) ? 2'b11 : {1'b0, VP[1]}); end assign nVP = ((BE) ? ~VP[0] : 1'bZ); // Generate nWait output; assert nRdy input when nWait asserted always @(posedge Clk or posedge Rst) begin if(Rst) nWait <= #1 1; else if(C1) nWait <= #1 ~(Mode == pWAI); end // Generate M65C02 Memory Lock Signal always @(posedge Clk) begin if(Rst) nML_OFD <= #1 1; else if(C1) nML_OFD <= #1 ~RMW; end assign nML = ((BE) ? nML_OFD : 1'bZ); // Generate Sync Output always @(posedge Clk) begin if(Rst) Sync_OFD <= #1 1; else if(C1) Sync_OFD <= #1 Done; end assign Sync = ((BE) ? Sync_OFD : 1'bZ); // Generate M65C02 RnW output always @(posedge Clk) begin if(Rst | ((C3 | C7) & Rdy)) RnW_OFD <= #1 1; else if(C1) RnW_OFD <= #1 ~(IO_Op == 1); end assign RnW = ((BE) ? RnW_OFD : 1'bZ); // Generate Asynchronous SRAM Read Strobe always @(posedge Clk) begin if(Rst | ((C3 | C7) & Rdy)) nOE_OFD <= #1 1; else if(C1) nOE_OFD <= #1 (~IO_Op[1] | BootROM); end assign nOE = ((BE) ? nOE_OFD : 1'bZ); // Generate Asynchronous SRAM Write Strobe always @(posedge Clk) begin if(Rst | ((C3 | C7) & Rdy)) nWr_OFD <= #1 1; else if(C1) nWr_OFD <= #1 ~(IO_Op == 1); end assign nWr = ((BE) ? nWr_OFD : 1'bZ); // Drive DO out of M65C02 module // Feed nWR strobe back in as second output enable. Coupled with half cycle // shift in the nOE signal, these delays should make it easy to satisfy // bus disable times when write operations follow reads and vice-versa. always @(posedge Clk or posedge Rst) begin if(Rst) DO_OFD <= #1 0; else if(C1) DO_OFD <= #1 DO; end assign DB = ((BE & ~nWr) ? DO_OFD : 8'bZ); // Capture Input Data from External Memory // Half cycle shift allows more time for RAM/peripheral device to output // data. Internal signal paths in the FPGA will operate on the data within // half a cycle of Clk. This requires tighter path controls by the map and // route tools. DI is distributed to IR, OP1, OP2, uPgm_ROM, and IDec_ROM. assign CE_DI_FFs = ((C3 | C7) & Rdy); assign Rst_DI_IFD = (Rst | BootROM); always @(posedge Clk) begin if(Rst_DI_IFD) DI_IFD <= #1 0; else if(CE_DI_FFs) DI_IFD <= #1 DB; end // Implement 2k x 8 internal Boot/Monitor ROM in Block RAM // Allow writes so that the NMI, RST, and IRQ vectors can be changed. // External active low write protect signal allows the writing to this RAM // to be inhibited. // Synchronize external Boot/Monitor ROM write protect always @(posedge Clk or posedge Rst) nWP <= #1 ((Rst) ? 0 : nWP_In); // Generate a synchronous Boot/Monitor ROM write enable always @(posedge Clk or posedge Rst) begin if(Rst) WE_Boot <= #1 0; else WE_Boot <= #1 (BootROM & (IO_Op == 1) & nWP & C1); end // Capture the output address to break long delay path like done for output // address always @(posedge Clk) begin if(Rst) begin iAO <= #1 pRST_Vector; iDO <= #1 0; end else if(C1) begin iAO <= #1 AO; iDO <= #1 DO; end end initial $readmemh(pBootROM_File, Boot, 0, ((2**pROM_AddrWidth)-1)); always @(posedge Clk) begin if(WE_Boot) Boot[iAO] <= #1 iDO; Boot_DO <= #1 Boot[iAO]; end // Add pipeline register to break circular path through Address Generator always @(posedge Clk or posedge Rst) begin if(Rst) Boot_IFD <= #1 0; else if(CE_DI_FFs) Boot_IFD <= #1 ((BootROM) ? Boot_DO : 0); end // Multiplex the External and Internal Data sources assign DI = Boot_IFD | DI_IFD; // LED Test Register assign WE_LED = (IO & (iAO[10:3] == 8'hFF) & (IO_Op == 1)); always @(posedge Clk) begin if(Rst) LED <= #1 0; else if(C3) LED <= #1 ((WE_LED) ? iDO[7:3] : LED); end endmodule