URL
https://opencores.org/ocsvn/mblite/mblite/trunk
Subversion Repositories mblite
[/] [mblite/] [trunk/] [hw/] [core/] [core_Pkg.vhd] - Rev 6
Go to most recent revision | Compare with Previous | Blame | View Log
---------------------------------------------------------------------------------------------- -- -- Input file : core_Pkg.vhd -- Design name : core_Pkg -- Author : Tamar Kranenburg -- Company : Delft University of Technology -- : Faculty EEMCS, Department ME&CE -- : Systems and Circuits group -- -- Description : Package with components and type definitions for the interface -- of the components -- -- ---------------------------------------------------------------------------------------------- LIBRARY ieee; USE ieee.std_logic_1164.ALL; USE ieee.std_logic_unsigned.ALL; LIBRARY mblite; USE mblite.config_Pkg.ALL; USE mblite.std_Pkg.ALL; PACKAGE core_Pkg IS ---------------------------------------------------------------------------------------------- -- TYPES USED IN MB-LITE ---------------------------------------------------------------------------------------------- TYPE alu_operation IS (ALU_ADD, ALU_OR, ALU_AND, ALU_XOR, ALU_SHIFT, ALU_SEXT8, ALU_SEXT16, ALU_MUL, ALU_BS); TYPE src_type_a IS (ALU_SRC_REGA, ALU_SRC_NOT_REGA, ALU_SRC_PC, ALU_SRC_ZERO); TYPE src_type_b IS (ALU_SRC_REGB, ALU_SRC_NOT_REGB, ALU_SRC_IMM, ALU_SRC_NOT_IMM); TYPE carry_type IS (CARRY_ZERO, CARRY_ONE, CARRY_ALU, CARRY_ARITH); TYPE carry_keep_type IS (CARRY_NOT_KEEP, CARRY_KEEP); TYPE branch_condition IS (NOP, BNC, BEQ, BNE, BLT, BLE, BGT, BGE); TYPE transfer_size IS (WORD, HALFWORD, BYTE); TYPE ctrl_execution IS RECORD alu_op : alu_operation; alu_src_a : src_type_a; alu_src_b : src_type_b; operation : std_logic; carry : carry_type; carry_keep : carry_keep_type; branch_cond : branch_condition; delay : std_logic; END RECORD; TYPE ctrl_memory IS RECORD mem_write : std_logic; mem_read : std_logic; transfer_size : transfer_size; END RECORD; TYPE ctrl_memory_writeback_type IS RECORD mem_read : std_logic; transfer_size : transfer_size; END RECORD; TYPE forward_type IS RECORD reg_d : std_logic_vector(CFG_GPRF_SIZE - 1 DOWNTO 0); reg_write : std_logic; END RECORD; TYPE imem_in_type IS RECORD dat_i : std_logic_vector(CFG_IMEM_WIDTH - 1 DOWNTO 0); END RECORD; TYPE imem_out_type IS RECORD adr_o : std_logic_vector(CFG_IMEM_SIZE - 1 DOWNTO 0); ena_o : std_logic; END RECORD; TYPE fetch_in_type IS RECORD hazard : std_logic; branch : std_logic; branch_target : std_logic_vector(CFG_IMEM_SIZE - 1 DOWNTO 0); END RECORD; TYPE fetch_out_type IS RECORD program_counter : std_logic_vector(CFG_IMEM_SIZE - 1 DOWNTO 0); END RECORD; TYPE gprf_out_type IS RECORD dat_a_o : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); dat_b_o : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); dat_d_o : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); END RECORD; TYPE decode_in_type IS RECORD program_counter : std_logic_vector(CFG_IMEM_SIZE - 1 DOWNTO 0); instruction : std_logic_vector(CFG_IMEM_WIDTH - 1 DOWNTO 0); ctrl_wb : forward_type; ctrl_mem_wb : ctrl_memory_writeback_type; mem_result : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); alu_result : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); interrupt : std_logic; flush_id : std_logic; END RECORD; TYPE decode_out_type IS RECORD reg_a : std_logic_vector(CFG_GPRF_SIZE - 1 DOWNTO 0); reg_b : std_logic_vector(CFG_GPRF_SIZE - 1 DOWNTO 0); imm : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); program_counter : std_logic_vector(CFG_IMEM_SIZE - 1 DOWNTO 0); hazard : std_logic; ctrl_ex : ctrl_execution; ctrl_mem : ctrl_memory; ctrl_wb : forward_type; fwd_dec_result : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); fwd_dec : forward_type; END RECORD; TYPE gprf_in_type IS RECORD adr_a_i : std_logic_vector(CFG_GPRF_SIZE - 1 DOWNTO 0); adr_b_i : std_logic_vector(CFG_GPRF_SIZE - 1 DOWNTO 0); adr_d_i : std_logic_vector(CFG_GPRF_SIZE - 1 DOWNTO 0); dat_w_i : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); adr_w_i : std_logic_vector(CFG_GPRF_SIZE - 1 DOWNTO 0); wre_i : std_logic; END RECORD; TYPE execute_out_type IS RECORD alu_result : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); dat_d : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); branch : std_logic; program_counter : std_logic_vector(CFG_IMEM_SIZE - 1 DOWNTO 0); flush_id : std_logic; ctrl_mem : ctrl_memory; ctrl_wb : forward_type; END RECORD; TYPE execute_in_type IS RECORD reg_a : std_logic_vector(CFG_GPRF_SIZE - 1 DOWNTO 0); dat_a : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); reg_b : std_logic_vector(CFG_GPRF_SIZE - 1 DOWNTO 0); dat_b : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); dat_d : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); imm : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); program_counter : std_logic_vector(CFG_IMEM_SIZE - 1 DOWNTO 0); fwd_dec : forward_type; fwd_dec_result : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); fwd_mem : forward_type; ctrl_ex : ctrl_execution; ctrl_mem : ctrl_memory; ctrl_wb : forward_type; ctrl_mem_wb : ctrl_memory_writeback_type; mem_result : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); alu_result : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); END RECORD; TYPE mem_in_type IS RECORD dat_d : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); alu_result : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); mem_result : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); program_counter : std_logic_vector(CFG_IMEM_SIZE - 1 DOWNTO 0); branch : std_logic; ctrl_mem : ctrl_memory; ctrl_wb : forward_type; END RECORD; TYPE mem_out_type IS RECORD alu_result : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); ctrl_wb : forward_type; ctrl_mem_wb : ctrl_memory_writeback_type; END RECORD; TYPE dmem_in_type IS RECORD dat_i : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); ena_i : std_logic; END RECORD; TYPE dmem_out_type IS RECORD dat_o : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); adr_o : std_logic_vector(CFG_DMEM_SIZE - 1 DOWNTO 0); sel_o : std_logic_vector(3 DOWNTO 0); we_o : std_logic; ena_o : std_logic; END RECORD; TYPE dmem_in_array_type IS ARRAY(NATURAL RANGE <>) OF dmem_in_type; TYPE dmem_out_array_type IS ARRAY(NATURAL RANGE <>) OF dmem_out_type; -- WB-master inputs from the wb-slaves TYPE wb_mst_in_type IS RECORD clk_i : std_logic; -- master clock input rst_i : std_logic; -- synchronous active high reset dat_i : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); -- databus input ack_i : std_logic; -- buscycle acknowledge input int_i : std_logic; -- interrupt request input END RECORD; -- WB-master outputs to the wb-slaves TYPE wb_mst_out_type IS RECORD adr_o : std_logic_vector(CFG_DMEM_SIZE - 1 DOWNTO 0); -- address bits dat_o : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); -- databus output we_o : std_logic; -- write enable output stb_o : std_logic; -- strobe signals sel_o : std_logic_vector(3 DOWNTO 0); -- select output array cyc_o : std_logic; -- valid BUS cycle output END RECORD; -- WB-slave inputs, from the WB-master TYPE wb_slv_in_type IS RECORD clk_i : std_logic; -- master clock input rst_i : std_logic; -- synchronous active high reset adr_i : std_logic_vector(CFG_DMEM_SIZE - 1 DOWNTO 0); -- address bits dat_i : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); -- Databus input we_i : std_logic; -- Write enable input stb_i : std_logic; -- strobe signals / core select signal sel_i : std_logic_vector(3 DOWNTO 0); -- select output array cyc_i : std_logic; -- valid BUS cycle input END RECORD; -- WB-slave outputs to the WB-master TYPE wb_slv_out_type IS RECORD dat_o : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); -- Databus output ack_o : std_logic; -- Bus cycle acknowledge output int_o : std_logic; -- interrupt request output END RECORD; ---------------------------------------------------------------------------------------------- -- COMPONENTS USED IN MB-LITE ---------------------------------------------------------------------------------------------- COMPONENT core GENERIC ( G_INTERRUPT : boolean := CFG_INTERRUPT; G_USE_HW_MUL : boolean := CFG_USE_HW_MUL; G_USE_BARREL : boolean := CFG_USE_BARREL; G_DEBUG : boolean := CFG_DEBUG ); PORT ( imem_o : OUT imem_out_type; dmem_o : OUT dmem_out_type; imem_i : IN imem_in_type; dmem_i : IN dmem_in_type; int_i : IN std_logic; rst_i : IN std_logic; clk_i : IN std_logic ); END COMPONENT; COMPONENT core_wb GENERIC ( G_INTERRUPT : boolean := CFG_INTERRUPT; G_USE_HW_MUL : boolean := CFG_USE_HW_MUL; G_USE_BARREL : boolean := CFG_USE_BARREL; G_DEBUG : boolean := CFG_DEBUG ); PORT ( imem_o : OUT imem_out_type; wb_o : OUT wb_mst_out_type; imem_i : IN imem_in_type; wb_i : IN wb_mst_in_type ); END COMPONENT; COMPONENT core_wb_adapter PORT ( dmem_i : OUT dmem_in_type; wb_o : OUT wb_mst_out_type; dmem_o : IN dmem_out_type; wb_i : IN wb_mst_in_type ); END COMPONENT; COMPONENT core_wb_async_adapter PORT ( dmem_i : OUT dmem_in_type; wb_o : OUT wb_mst_out_type; dmem_o : IN dmem_out_type; wb_i : IN wb_mst_in_type ); END COMPONENT; COMPONENT fetch PORT ( fetch_o : OUT fetch_out_type; imem_o : OUT imem_out_type; fetch_i : IN fetch_in_type; rst_i : IN std_logic; ena_i : IN std_logic; clk_i : IN std_logic ); END COMPONENT; COMPONENT decode GENERIC ( G_INTERRUPT : boolean := CFG_INTERRUPT; G_USE_HW_MUL : boolean := CFG_USE_HW_MUL; G_USE_BARREL : boolean := CFG_USE_BARREL; G_DEBUG : boolean := CFG_DEBUG ); PORT ( decode_o : OUT decode_out_type; gprf_o : OUT gprf_out_type; decode_i : IN decode_in_type; ena_i : IN std_logic; rst_i : IN std_logic; clk_i : IN std_logic ); END COMPONENT; COMPONENT gprf PORT ( gprf_o : OUT gprf_out_type; gprf_i : IN gprf_in_type; ena_i : IN std_logic; clk_i : IN std_logic ); END COMPONENT; COMPONENT execute GENERIC ( G_USE_HW_MUL : boolean := CFG_USE_HW_MUL; G_USE_BARREL : boolean := CFG_USE_BARREL ); PORT ( exec_o : OUT execute_out_type; exec_i : IN execute_in_type; ena_i : IN std_logic; rst_i : IN std_logic; clk_i : IN std_logic ); END COMPONENT; COMPONENT mem PORT ( mem_o : OUT mem_out_type; dmem_o : OUT dmem_out_type; mem_i : IN mem_in_type; ena_i : IN std_logic; rst_i : IN std_logic; clk_i : IN std_logic ); END COMPONENT; COMPONENT core_address_decoder GENERIC ( G_NUM_SLAVES : positive := CFG_NUM_SLAVES ); PORT ( m_dmem_i : OUT dmem_in_type; s_dmem_o : OUT dmem_out_array_type; m_dmem_o : IN dmem_out_type; s_dmem_i : IN dmem_in_array_type; clk_i : IN std_logic ); END COMPONENT; ---------------------------------------------------------------------------------------------- -- FUNCTIONS USED IN MB-LITE ---------------------------------------------------------------------------------------------- FUNCTION select_register_data(reg_dat, reg, wb_dat : std_logic_vector; write : std_logic) RETURN std_logic_vector; FUNCTION forward_condition(reg_write : std_logic; reg_a, reg_d : std_logic_vector) RETURN std_logic; FUNCTION align_mem_load(data : std_logic_vector; size : transfer_size; address : std_logic_vector) RETURN std_logic_vector; FUNCTION align_mem_store(data : std_logic_vector; size : transfer_size) RETURN std_logic_vector; FUNCTION decode_mem_store(address : std_logic_vector(1 DOWNTO 0); size : transfer_size) RETURN std_logic_vector; END core_Pkg; PACKAGE BODY core_Pkg IS -- This function select the register value: -- A) zero -- B) bypass value read from register file -- C) value from register file FUNCTION select_register_data(reg_dat, reg, wb_dat : std_logic_vector; write : std_logic) RETURN std_logic_vector IS VARIABLE tmp : std_logic_vector(CFG_DMEM_WIDTH - 1 DOWNTO 0); BEGIN IF CFG_REG_FORCE_ZERO = true AND is_zero(reg) = '1' THEN tmp := (OTHERS => '0'); ELSIF CFG_REG_FWD_WB = true AND write = '1' THEN tmp := wb_dat; ELSE tmp := reg_dat; END IF; RETURN tmp; END select_register_data; -- This function checks if a forwarding condition is met. The condition is met of register A and D match -- and the signal needs to be written back to the register file. FUNCTION forward_condition(reg_write : std_logic; reg_a, reg_d : std_logic_vector ) RETURN std_logic IS BEGIN RETURN reg_write AND compare(reg_a, reg_d); END forward_condition; -- This function aligns the memory load operation. The load byte-order is defined here. FUNCTION align_mem_load(data : std_logic_vector; size : transfer_size; address : std_logic_vector ) RETURN std_logic_vector IS BEGIN IF CFG_BYTE_ORDER = false THEN -- Little endian decoding CASE size IS WHEN byte => CASE address(1 DOWNTO 0) IS WHEN "00" => RETURN "000000000000000000000000" & data(CFG_DMEM_WIDTH/4 - 1 DOWNTO 0); WHEN "01" => RETURN "000000000000000000000000" & data(CFG_DMEM_WIDTH/2 - 1 DOWNTO CFG_DMEM_WIDTH/4); WHEN "10" => RETURN "000000000000000000000000" & data(3*CFG_DMEM_WIDTH/4 - 1 DOWNTO CFG_DMEM_WIDTH/2); WHEN "11" => RETURN "000000000000000000000000" & data(CFG_DMEM_WIDTH - 1 DOWNTO 3*CFG_DMEM_WIDTH/4); WHEN OTHERS => RETURN "00000000000000000000000000000000"; END CASE; WHEN halfword => CASE address(1 DOWNTO 0) IS WHEN "00" => RETURN "0000000000000000" & data(CFG_DMEM_WIDTH/2 - 1 DOWNTO 0); WHEN "10" => RETURN "0000000000000000" & data(CFG_DMEM_WIDTH - 1 DOWNTO CFG_DMEM_WIDTH/2); WHEN OTHERS => RETURN "00000000000000000000000000000000"; END CASE; WHEN OTHERS => RETURN data; END CASE; ELSE -- Big endian decoding CASE size IS WHEN byte => CASE address(1 DOWNTO 0) IS WHEN "00" => RETURN "000000000000000000000000" & data(CFG_DMEM_WIDTH - 1 DOWNTO 3*CFG_DMEM_WIDTH/4); WHEN "01" => RETURN "000000000000000000000000" & data(3*CFG_DMEM_WIDTH/4 - 1 DOWNTO CFG_DMEM_WIDTH/2); WHEN "10" => RETURN "000000000000000000000000" & data(CFG_DMEM_WIDTH/2 - 1 DOWNTO CFG_DMEM_WIDTH/4); WHEN "11" => RETURN "000000000000000000000000" & data(CFG_DMEM_WIDTH/4 - 1 DOWNTO 0); WHEN OTHERS => RETURN "00000000000000000000000000000000"; END CASE; WHEN halfword => CASE address(1 DOWNTO 0) IS WHEN "00" => RETURN "0000000000000000" & data(CFG_DMEM_WIDTH - 1 DOWNTO CFG_DMEM_WIDTH/2); WHEN "10" => RETURN "0000000000000000" & data(CFG_DMEM_WIDTH/2 - 1 DOWNTO 0); WHEN OTHERS => RETURN "00000000000000000000000000000000"; END CASE; WHEN OTHERS => RETURN data; END CASE; END IF; END align_mem_load; -- This function repeats the operand to all positions memory store operation. FUNCTION align_mem_store(data : std_logic_vector; size : transfer_size) RETURN std_logic_vector IS BEGIN CASE size IS WHEN byte => RETURN data( 7 DOWNTO 0) & data( 7 DOWNTO 0) & data(7 DOWNTO 0) & data(7 DOWNTO 0); WHEN halfword => RETURN data(15 DOWNTO 0) & data(15 DOWNTO 0); WHEN OTHERS => RETURN data; END CASE; END align_mem_store; -- This function selects the correct bytes for memory writes. The store byte-order (MSB / LSB) can be defined here. FUNCTION decode_mem_store(address : std_logic_vector(1 DOWNTO 0); size : transfer_size) RETURN std_logic_vector IS BEGIN IF CFG_BYTE_ORDER = false THEN -- Little endian encoding CASE size IS WHEN BYTE => CASE address IS WHEN "00" => RETURN "0001"; WHEN "01" => RETURN "0010"; WHEN "10" => RETURN "0100"; WHEN "11" => RETURN "1000"; WHEN OTHERS => RETURN "0000"; END CASE; WHEN HALFWORD => CASE address IS WHEN "00" => RETURN "0011"; WHEN "10" => RETURN "1100"; WHEN OTHERS => RETURN "0000"; END CASE; WHEN OTHERS => RETURN "1111"; END CASE; ELSE -- Big endian encoding CASE size IS WHEN BYTE => CASE address IS WHEN "00" => RETURN "1000"; WHEN "01" => RETURN "0100"; WHEN "10" => RETURN "0010"; WHEN "11" => RETURN "0001"; WHEN OTHERS => RETURN "0000"; END CASE; WHEN HALFWORD => CASE address IS -- Big endian encoding WHEN "10" => RETURN "0011"; WHEN "00" => RETURN "1100"; WHEN OTHERS => RETURN "0000"; END CASE; WHEN OTHERS => RETURN "1111"; END CASE; END IF; END decode_mem_store; END core_Pkg;
Go to most recent revision | Compare with Previous | Blame | View Log