URL
https://opencores.org/ocsvn/minsoc/minsoc/trunk
Subversion Repositories minsoc
[/] [minsoc/] [branches/] [verilator/] [utils/] [contributions/] [initialized_onchip_ram/] [minsoc_onchip_ram_top_altera.v] - Rev 139
Compare with Previous | Blame | View Log
////////////////////////////////////////////////////////////////////// //// //// //// Generic Wishbone controller for //// //// Single-Port Synchronous RAM //// //// //// //// This file is part of memory library available from //// //// http://www.opencores.org/cvsweb.shtml/minsoc/ //// //// //// //// Description //// //// This Wishbone controller connects to the wrapper of //// //// the single-port synchronous memory interface. //// //// Besides universal memory due to onchip_ram it provides a //// //// generic way to set the depth of the memory. //// //// //// //// To Do: //// //// //// //// Author(s): //// //// - Raul Fajardo, rfajardo@gmail.com //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2000 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.gnu.org/licenses/lgpl.html //// //// //// ////////////////////////////////////////////////////////////////////// // // Revision History // // Revision 1.1 2009/10/02 16:49 fajardo // Not using the oe signal (output enable) from // memories, instead multiplexing the outputs // between the different instantiated blocks // // // Revision 1.0 2009/08/18 15:15:00 fajardo // Created interface and tested // `include "minsoc_defines.v" `define mem_init_file "uart-nocache.mif" //specific memory initalization file name, which can be intel hex(.hex) or Altera mif file //if no initalization file used, give a name of "UNUSED" module minsoc_onchip_ram_top ( wb_clk_i, wb_rst_i, wb_dat_i, wb_dat_o, wb_adr_i, wb_sel_i, wb_we_i, wb_cyc_i, wb_stb_i, wb_ack_o, wb_err_o ); // // Parameters // parameter adr_width = 13; //Memory address width, is composed by blocks of aw_int, is not allowed to be less than 12 localparam aw_int = 11; //11 = 2048 localparam blocks = (1<<(adr_width-aw_int)); //generated memory contains "blocks" memory blocks of 2048x32 2048 depth x32 bit data // // I/O Ports // input wb_clk_i; input wb_rst_i; // // WB slave i/f // input [31:0] wb_dat_i; output [31:0] wb_dat_o; input [31:0] wb_adr_i; input [3:0] wb_sel_i; input wb_we_i; input wb_cyc_i; input wb_stb_i; output wb_ack_o; output wb_err_o; // // Internal regs and wires // wire we; wire [3:0] be_i; wire [31:0] wb_dat_o; reg ack_we; reg ack_re; // // Aliases and simple assignments // assign wb_ack_o = ack_re | ack_we; assign wb_err_o = wb_cyc_i & wb_stb_i & (|wb_adr_i[23:adr_width+2]); // If Access to > (8-bit leading prefix ignored) assign we = wb_cyc_i & wb_stb_i & wb_we_i & (|wb_sel_i[3:0]); assign be_i = (wb_cyc_i & wb_stb_i) * wb_sel_i; // // Write acknowledge // always @ (negedge wb_clk_i or posedge wb_rst_i) begin if (wb_rst_i) ack_we <= 1'b0; else if (wb_cyc_i & wb_stb_i & wb_we_i & ~ack_we) ack_we <= #1 1'b1; else ack_we <= #1 1'b0; end // // read acknowledge // always @ (posedge wb_clk_i or posedge wb_rst_i) begin if (wb_rst_i) ack_re <= 1'b0; else if (wb_cyc_i & wb_stb_i & ~wb_err_o & ~wb_we_i & ~ack_re) ack_re <= #1 1'b1; else ack_re <= #1 1'b0; end `ifdef ALTERA_FPGA //only for altera memory initialization //2^adr_width x 32bit single-port ram. altsyncram altsyncram_component ( .wren_a (we), .clock0 (wb_clk_i), .byteena_a (be_i), .address_a (wb_adr_i[adr_width+1:2]), .data_a (wb_dat_i), .q_a (wb_dat_o), .aclr0 (1'b0), .aclr1 (1'b0), .address_b (1'b1), .addressstall_a (1'b0), .addressstall_b (1'b0), .byteena_b (1'b1), .clock1 (1'b1), .clocken0 (1'b1), .clocken1 (1'b1), .clocken2 (1'b1), .clocken3 (1'b1), .data_b (1'b1), .eccstatus (), .q_b (), .rden_a (1'b1), .rden_b (1'b1), .wren_b (1'b0)); defparam altsyncram_component.clock_enable_input_a = "BYPASS", altsyncram_component.clock_enable_output_a = "BYPASS", altsyncram_component.init_file = `mem_init_file, altsyncram_component.intended_device_family = "Stratix III", altsyncram_component.lpm_hint = "ENABLE_RUNTIME_MOD=NO", altsyncram_component.lpm_type = "altsyncram", altsyncram_component.operation_mode = "SINGLE_PORT", altsyncram_component.outdata_aclr_a = "NONE", altsyncram_component.outdata_reg_a = "UNREGISTERED", altsyncram_component.power_up_uninitialized = "FALSE", altsyncram_component.read_during_write_mode_port_a = "NEW_DATA_NO_NBE_READ", altsyncram_component.numwords_a = (1<<adr_width), altsyncram_component.widthad_a = adr_width, altsyncram_component.width_a = 32, altsyncram_component.byte_size = 8, altsyncram_component.width_byteena_a = 4; `else //other FPGA Type //Generic (multiple inputs x 1 output) MUX localparam mux_in_nr = blocks; localparam slices = adr_width-aw_int; localparam mux_out_nr = blocks-1; wire [31:0] int_dat_o[0:mux_in_nr-1]; wire [31:0] mux_out[0:mux_out_nr-1]; generate genvar j, k; for (j=0; j<slices; j=j+1) begin : SLICES for (k=0; k<(mux_in_nr>>(j+1)); k=k+1) begin : MUX if (j==0) begin mux2 # ( .dw(32) ) mux_int( .sel( wb_adr_i[aw_int+2+j] ), .in1( int_dat_o[k*2] ), .in2( int_dat_o[k*2+1] ), .out( mux_out[k] ) ); end else begin mux2 # ( .dw(32) ) mux_int( .sel( wb_adr_i[aw_int+2+j] ), .in1( mux_out[(mux_in_nr-(mux_in_nr>>(j-1)))+k*2] ), .in2( mux_out[(mux_in_nr-(mux_in_nr>>(j-1)))+k*2+1] ), .out( mux_out[(mux_in_nr-(mux_in_nr>>j))+k] ) ); end end end endgenerate //last output = total output assign wb_dat_o = mux_out[mux_out_nr-1]; //(mux_in_nr-(mux_in_nr>>j)): //-Given sum of 2^i | i = x -> y series can be resumed to 2^(y+1)-2^x //so, with this expression I'm evaluating how many times the internal loop has been run wire [blocks-1:0] bank; generate genvar i; for (i=0; i < blocks; i=i+1) begin : MEM assign bank[i] = wb_adr_i[adr_width+1:aw_int+2] == i; //BANK0 minsoc_onchip_ram block_ram_0 ( .clk(wb_clk_i), .rst(wb_rst_i), .addr(wb_adr_i[aw_int+1:2]), .di(wb_dat_i[7:0]), .doq(int_dat_o[i][7:0]), .we(we & bank[i]), .oe(1'b1), .ce(be_i[0]) ); minsoc_onchip_ram block_ram_1 ( .clk(wb_clk_i), .rst(wb_rst_i), .addr(wb_adr_i[aw_int+1:2]), .di(wb_dat_i[15:8]), .doq(int_dat_o[i][15:8]), .we(we & bank[i]), .oe(1'b1), .ce(be_i[1]) ); minsoc_onchip_ram block_ram_2 ( .clk(wb_clk_i), .rst(wb_rst_i), .addr(wb_adr_i[aw_int+1:2]), .di(wb_dat_i[23:16]), .doq(int_dat_o[i][23:16]), .we(we & bank[i]), .oe(1'b1), .ce(be_i[2]) ); minsoc_onchip_ram block_ram_3 ( .clk(wb_clk_i), .rst(wb_rst_i), .addr(wb_adr_i[aw_int+1:2]), .di(wb_dat_i[31:24]), .doq(int_dat_o[i][31:24]), .we(we & bank[i]), .oe(1'b1), .ce(be_i[3]) ); end endgenerate `endif endmodule module mux2(sel,in1,in2,out); parameter dw = 32; input sel; input [dw-1:0] in1, in2; output reg [dw-1:0] out; always @ (sel or in1 or in2) begin case (sel) 1'b0: out = in1; 1'b1: out = in2; endcase end endmodule