URL
https://opencores.org/ocsvn/mod_mult_exp/mod_mult_exp/trunk
Subversion Repositories mod_mult_exp
[/] [mod_mult_exp/] [trunk/] [rtl/] [vhdl/] [mod_mult/] [ModularMultiplierIterative.vhd] - Rev 6
Compare with Previous | Blame | View Log
----------------------------------------------------------------------- ---- ---- ---- Montgomery modular multiplier and exponentiator ---- ---- ---- ---- This file is part of the Montgomery modular multiplier ---- ---- and exponentiator project ---- ---- http://opencores.org/project,mod_mult_exp ---- ---- ---- ---- Description: ---- ---- Montgomery modular multiplier main module. It combines all ---- ---- subomponents. It takes two numbers and modulus as the input ---- ---- and returns the Montgomery product A*B*(R^{-1}) mod M ---- ---- where R^{-1} is the modular multiplicative inverse. ---- ---- R*R^{-1} == 1 mod M ---- ---- R = 2^word_length mod M ---- ---- and word_length is the binary width of the ---- ---- operated word (in this case 32, 64 or 512 bit) ---- ---- To Do: ---- ---- ---- ---- Author(s): ---- ---- - Krzysztof Gajewski, gajos@opencores.org ---- ---- k.gajewski@gmail.com ---- ---- ---- ----------------------------------------------------------------------- ---- ---- ---- Copyright (C) 2019 Authors and OPENCORES.ORG ---- ---- ---- ---- This source file may be used and distributed without ---- ---- restriction provided that this copyright statement is not ---- ---- removed from the file and that any derivative work contains ---- ---- the original copyright notice and the associated disclaimer. ---- ---- ---- ---- This source file is free software; you can redistribute it ---- ---- and-or modify it under the terms of the GNU Lesser General ---- ---- Public License as published by the Free Software Foundation; ---- ---- either version 2.1 of the License, or (at your option) any ---- ---- later version. ---- ---- ---- ---- This source is distributed in the hope that it will be ---- ---- useful, but WITHOUT ANY WARRANTY; without even the implied ---- ---- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ---- ---- PURPOSE. See the GNU Lesser General Public License for more ---- ---- details. ---- ---- ---- ---- You should have received a copy of the GNU Lesser General ---- ---- Public License along with this source; if not, download it ---- ---- from http://www.opencores.org/lgpl.shtml ---- ---- ---- ----------------------------------------------------------------------- library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_UNSIGNED.ALL; use IEEE.NUMERIC_STD.ALL; use work.properties.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --use IEEE.NUMERIC_STD.ALL; -- Uncomment the following library declaration if instantiating -- any Xilinx primitives in this code. --library UNISIM; --use UNISIM.VComponents.all; entity ModularMultiplierIterative is generic ( word_size : integer := WORD_LENGTH ); port ( A : in STD_LOGIC_VECTOR(word_size - 1 downto 0); -- multiplicand B : in STD_LOGIC_VECTOR(word_size - 1 downto 0); -- multiplier M : in STD_LOGIC_VECTOR(word_size - 1 downto 0); -- modulus start : in STD_LOGIC; product : out STD_LOGIC_VECTOR(word_size - 1 downto 0); -- product ready : out STD_LOGIC; clk : in STD_LOGIC ); end ModularMultiplierIterative; architecture Behavioral of ModularMultiplierIterative is -- Multiplexer component MontMult4inMux is generic ( word_size : integer := WORD_LENGTH ); port ( ctrl : in STD_LOGIC_VECTOR(1 downto 0); zero : in STD_LOGIC_VECTOR(word_size downto 0); M : in STD_LOGIC_VECTOR(word_size downto 0); Y : in STD_LOGIC_VECTOR(word_size downto 0); YplusM : in STD_LOGIC_VECTOR(word_size downto 0); output : out STD_LOGIC_VECTOR(word_size downto 0) ); end component MontMult4inMux; -- State machine component ModMultIter_SM is generic ( word_size : integer := WORD_LENGTH ); port( x : in STD_LOGIC_VECTOR(word_size - 1 downto 0); start : in STD_LOGIC; clk : in STD_LOGIC; s_0 : in STD_LOGIC; y_0 : in STD_LOGIC; ready : out STD_LOGIC; out_reg_en : out STD_LOGIC; mux_mult_ctrl : out STD_LOGIC; mux_4in_ctrl : out STD_LOGIC_VECTOR(1 downto 0) ); end component ModMultIter_SM; -- Signals signal Mi : STD_LOGIC_VECTOR(word_size downto 0); signal Yi : STD_LOGIC_VECTOR(word_size downto 0); signal sumYM : STD_LOGIC_VECTOR(word_size downto 0); signal zero_sig : STD_LOGIC_VECTOR(word_size downto 0) := (others => '0'); signal four_in_mux_out : STD_LOGIC_VECTOR(word_size downto 0); signal mux_4in_ctrl_sig : STD_LOGIC_VECTOR(1 downto 0); signal mult_mux_ctrl_sig : STD_LOGIC; signal mult_mux_out : STD_LOGIC_VECTOR(word_size downto 0); signal out_reg_sig : STD_LOGIC_VECTOR(word_size downto 0); signal product_sig : STD_LOGIC_VECTOR(word_size downto 0); signal out_en : STD_LOGIC; signal sum_mult_out : STD_LOGIC_VECTOR(word_size + 1 downto 0); signal sum_div_2 : STD_LOGIC_VECTOR(word_size downto 0); begin zero_sig <= (others => '0'); -- '0' -- 'widening' to store the intermediate steps Mi <= '0' & M; Yi <= '0' & B; -- Operations needed to compute the Montgomery multiplications sum_div_2 <= sum_mult_out(word_size + 1 downto 1); sum_mult_out <= ('0' & four_in_mux_out) + ('0' & mult_mux_out); sumYM <= ('0' & B) + ('0' & M); -- Multiplexer component four_in_mux : MontMult4inMux port map( ctrl => mux_4in_ctrl_sig, zero => zero_sig, M => Mi, Y => Yi, YplusM => sumYM, output => four_in_mux_out ); -- Two input asynchronuos multiplexer for output 'not clear' code due to -- 'historical works' mult_mux_out <= (others => '0') when (mult_mux_ctrl_sig = '0') else out_reg_sig; -- State machine state_machine : ModMultIter_SM port map( x => A, start => start, clk => clk, s_0 => out_reg_sig(0), y_0 => B(0), ready => ready, out_reg_en => out_en, mux_mult_ctrl => mult_mux_ctrl_sig, mux_4in_ctrl => mux_4in_ctrl_sig ); -- Register like structure for signal synchronous work clock : process(clk, start) begin if (clk = '1' and clk'Event) then if (start = '0') then out_reg_sig <= (others => '0'); elsif out_en = '1' then out_reg_sig <= sum_div_2; end if; end if; end process clock; -- One additional 'subtract' component which was added after -- first experiments with Montgomery multiplication. It was -- observed that sometimes intermediate step can be higher -- than modulus. In this situation 'M' substraction is -- compulsory product_proc : process(clk, Mi, out_reg_sig) begin if(out_reg_sig < ("0" & Mi)) then product_sig <= out_reg_sig; else product_sig <= out_reg_sig - Mi; end if; end process product_proc; product <= product_sig(word_size - 1 downto 0); end Behavioral;