URL
https://opencores.org/ocsvn/mod_sim_exp/mod_sim_exp/trunk
Subversion Repositories mod_sim_exp
[/] [mod_sim_exp/] [trunk/] [bench/] [vhdl/] [msec_axi_tb.vhd] - Rev 94
Compare with Previous | Blame | View Log
---------------------------------------------------------------------- ---- msec_axi_tb ---- ---- ---- ---- This file is part of the ---- ---- Modular Simultaneous Exponentiation Core project ---- ---- http://www.opencores.org/cores/mod_sim_exp/ ---- ---- ---- ---- Description ---- ---- testbench for the AXI-Lite interface of the modular ---- ---- simultaneous exponentiation core. Performs some ---- ---- exponentiations to verify the design ---- ---- Takes input parameters from in/sim_input.txt en writes ---- ---- result and output to out/axi_sim_output.txt. The AXI bus ---- ---- transfers ar written to out/axi_bus_output ---- ---- ---- ---- Dependencies: ---- ---- - msec_ipcore_axilite ---- ---- ---- ---- Authors: ---- ---- - Geoffrey Ottoy, DraMCo research group ---- ---- - Jonas De Craene, JonasDC@opencores.org ---- ---- ---- ---------------------------------------------------------------------- ---- ---- ---- Copyright (C) 2011 DraMCo research group and OPENCORES.ORG ---- ---- ---- ---- This source file may be used and distributed without ---- ---- restriction provided that this copyright statement is not ---- ---- removed from the file and that any derivative work contains ---- ---- the original copyright notice and the associated disclaimer. ---- ---- ---- ---- This source file is free software; you can redistribute it ---- ---- and/or modify it under the terms of the GNU Lesser General ---- ---- Public License as published by the Free Software Foundation; ---- ---- either version 2.1 of the License, or (at your option) any ---- ---- later version. ---- ---- ---- ---- This source is distributed in the hope that it will be ---- ---- useful, but WITHOUT ANY WARRANTY; without even the implied ---- ---- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ---- ---- PURPOSE. See the GNU Lesser General Public License for more ---- ---- details. ---- ---- ---- ---- You should have received a copy of the GNU Lesser General ---- ---- Public License along with this source; if not, download it ---- ---- from http://www.opencores.org/lgpl.shtml ---- ---- ---- ---------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all; library std; use std.textio.all; library ieee; use ieee.std_logic_textio.all; entity msec_axi_tb is end msec_axi_tb; architecture arch of msec_axi_tb is -- constants constant CLK_PERIOD : time := 10 ns; constant CORE_CLK_PERIOD : time := 4 ns; constant C_S_AXI_DATA_WIDTH : integer := 32; constant C_S_AXI_ADDR_WIDTH : integer := 32; file output : text open write_mode is "out/axi_sim_output.txt"; file axi_dbg : text open write_mode is "out/axi_bus_output.txt"; file input : text open read_mode is "src/sim_input.txt"; ------------------------------------------------------------------ -- Core parameters ------------------------------------------------------------------ constant C_NR_BITS_TOTAL : integer := 1536; constant C_NR_STAGES_TOTAL : integer := 96; constant C_NR_STAGES_LOW : integer := 32; constant C_SPLIT_PIPELINE : boolean := true; constant C_FIFO_AW : integer := 7; -- set to log2( (maximum exponent width)/16 ) constant C_MEM_STYLE : string := "xil_prim"; -- xil_prim, generic, asym are valid options constant C_FPGA_MAN : string := "xilinx"; -- xilinx, altera are valid options constant C_BASEADDR : std_logic_vector(0 to 31) := x"A0000000"; constant C_HIGHADDR : std_logic_vector(0 to 31) := x"A0007FFF"; -- extra calculated constants constant NR_BITS_LOW : integer := (C_NR_BITS_TOTAL/C_NR_STAGES_TOTAL)*C_NR_STAGES_LOW; constant NR_BITS_HIGH : integer := C_NR_BITS_TOTAL-NR_BITS_LOW; signal core_clk : std_logic := '0'; ------------------------- -- AXI4lite interface ------------------------- --- Global signals signal S_AXI_ACLK : std_logic; signal S_AXI_ARESETN : std_logic; --- Write address channel signal S_AXI_AWADDR : std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0); signal S_AXI_AWVALID : std_logic; signal S_AXI_AWREADY : std_logic; --- Write data channel signal S_AXI_WDATA : std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0); signal S_AXI_WVALID : std_logic; signal S_AXI_WREADY : std_logic; signal S_AXI_WSTRB : std_logic_vector((C_S_AXI_DATA_WIDTH/8)-1 downto 0); --- Write response channel signal S_AXI_BVALID : std_logic; signal S_AXI_BREADY : std_logic; signal S_AXI_BRESP : std_logic_vector(1 downto 0); --- Read address channel signal S_AXI_ARADDR : std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0); signal S_AXI_ARVALID : std_logic; signal S_AXI_ARREADY : std_logic; --- Read data channel signal S_AXI_RDATA : std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0); signal S_AXI_RVALID : std_logic; signal S_AXI_RREADY : std_logic; signal S_AXI_RRESP : std_logic_vector(1 downto 0); -- CORE control reg bits signal core_control_reg : std_logic_vector(31 downto 0) := (others=>'0'); signal core_start : std_logic; signal core_exp_m : std_logic; signal core_p_sel : std_logic_vector(1 downto 0); signal core_dest_op_single : std_logic_vector(1 downto 0); signal core_x_sel_single : std_logic_vector(1 downto 0); signal core_y_sel_single : std_logic_vector(1 downto 0); signal core_modulus_sel : std_logic; signal calc_time : std_logic; signal IntrEvent : std_logic; begin -- map the core control bits to the core control register core_control_reg(31 downto 30) <= core_p_sel; core_control_reg(29 downto 28) <= core_dest_op_single; core_control_reg(27 downto 26) <= core_x_sel_single; core_control_reg(25 downto 24) <= core_y_sel_single; core_control_reg(23) <= core_start; core_control_reg(22) <= core_exp_m; core_control_reg(21) <= core_modulus_sel; ------------------------------------------ -- Generate S_AXI_ACLK ------------------------------------------ clk_process : process begin while (true) loop S_AXI_ACLK <= '0'; wait for CLK_PERIOD/2; S_AXI_ACLK <= '1'; wait for CLK_PERIOD/2; end loop; end process; core_clk_process : process begin while (true) loop core_clk <= '0'; wait for CORE_CLK_PERIOD/2; core_clk <= '1'; wait for CORE_CLK_PERIOD/2; end loop; end process; stim_proc : process -- variables to read file variable L : line; variable Lw : line; variable La : line; -- constants for memory space selection constant op_modulus : std_logic_vector(2 downto 0) := "000"; constant op_0 : std_logic_vector(2 downto 0) := "001"; constant op_1 : std_logic_vector(2 downto 0) := "010"; constant op_2 : std_logic_vector(2 downto 0) := "011"; constant op_3 : std_logic_vector(2 downto 0) := "100"; constant fifo : std_logic_vector(2 downto 0) := "101"; constant control_reg : std_logic_vector(2 downto 0) := "110"; procedure waitclk(n : natural := 1) is begin for i in 1 to n loop wait until rising_edge(S_AXI_ACLK); end loop; end waitclk; procedure axi_write( variable address : std_logic_vector(31 downto 0); variable data : std_logic_vector(31 downto 0) ) is variable counter : integer := 0; begin -- place address on the bus wait until rising_edge(S_AXI_ACLK); S_AXI_AWADDR <= address; S_AXI_AWVALID <= '1'; S_AXI_WDATA <= data; S_AXI_WVALID <= '1'; S_AXI_WSTRB <= "1111"; while (counter /= 2) loop -- wait for slave response wait until rising_edge(S_AXI_ACLK); if (S_AXI_AWREADY='1') then S_AXI_AWVALID <= '0'; counter := counter+1; end if; if (S_AXI_WREADY='1') then S_AXI_WVALID <= '0'; counter := counter+1; end if; end loop; S_AXI_BREADY <= '1'; if S_AXI_BVALID/='1' then wait until S_AXI_BVALID='1'; end if; write(La, string'("Wrote ")); hwrite(La, data); write(La, string'(" to ")); hwrite(La, address); if (S_AXI_BRESP /= "00") then write(La, string'(" --> Error! Status: ")); write(La, S_AXI_BRESP); end if; writeline(axi_dbg, La); wait until rising_edge(S_AXI_ACLK); S_AXI_BREADY <= '0'; end axi_write; procedure axi_read( variable address : std_logic_vector(31 downto 0); variable data : out std_logic_vector(31 downto 0) ) is begin -- place address on the bus wait until rising_edge(S_AXI_ACLK); S_AXI_ARADDR <= address; S_AXI_ARVALID <= '1'; wait until S_AXI_ARREADY='1'; wait until rising_edge(S_AXI_ACLK); S_AXI_ARVALID <= '0'; -- wait for read data S_AXI_RREADY <= '1'; wait until S_AXI_RVALID='1'; wait until rising_edge(S_AXI_ACLK); data := S_AXI_RDATA; write(La, string'("Read ")); hwrite(La, S_AXI_RDATA); write(La, string'(" from ")); hwrite(La, address); if (S_AXI_RRESP /= "00") then write(La, string'(" --> Error! Status: ")); write(La, S_AXI_RRESP); end if; writeline(axi_dbg, La); S_AXI_RREADY <= '0'; --assert false report "Wrote " & " to " & " Status=" & to_string(S_AXI_BRESP) severity note; end axi_read; procedure axi_write_control_reg is variable address : std_logic_vector(31 downto 0); variable data : std_logic_vector(31 downto 0); begin wait until rising_edge(S_AXI_ACLK); address := C_BASEADDR+x"00006000"; data := core_control_reg; axi_write(address, data); end axi_write_control_reg; procedure loadOp(constant op_sel : std_logic_vector(2 downto 0); variable op_data : std_logic_vector(2047 downto 0)) is variable address : std_logic_vector(31 downto 0); variable zero : std_logic_vector(31 downto 0) := (others=>'0'); begin -- set the start address address := C_BASEADDR(0 to 15) & '0' & op_sel & "0000" & "000000" & "00"; -- write operand per 32 bits for i in 0 to (C_NR_BITS_TOTAL/32)-1 loop case (core_p_sel) is when "11" => axi_write(address, op_data(((i+1)*32)-1 downto (i*32))); when "01" => if (i < 16) then axi_write(address, op_data(((i+1)*32)-1 downto (i*32))); else axi_write(address, zero); end if; when "10" => if (i >= 16) then axi_write(address, op_data(((i-15)*32)-1 downto ((i-16)*32))); else axi_write(address, zero); end if; when others => axi_write(address, zero); end case; -- next address is 32 further address := address + "100"; end loop; end loadOp; procedure readOp(constant op_sel : std_logic_vector(2 downto 0); variable op_data : out std_logic_vector(2047 downto 0); variable op_width : integer) is variable address : std_logic_vector(31 downto 0); variable data : std_logic_vector(31 downto 0); begin -- set destination operand, cause only can readfrom destination operand case op_sel is when "001" => core_dest_op_single <= "00"; when "010" => core_dest_op_single <= "01"; when "011" => core_dest_op_single <= "10"; when "100" => core_dest_op_single <= "11"; when others => core_dest_op_single <= "00"; end case; axi_write_control_reg; -- set the start address if (core_p_sel = "10") then address := C_BASEADDR(0 to 15) & '0' & op_sel & "0000" & "010000" & "00"; else address := C_BASEADDR(0 to 15) & '0' & op_sel & "0000" & "000000" & "00"; end if; -- read the data for i in 0 to (op_width/32)-1 loop axi_read(address, data); op_data(((i+1)*32)-1 downto (i*32)) := data; -- next address is 32 further address := address + "100"; end loop; end readOp; procedure loadFifo(variable data : std_logic_vector(31 downto 0)) is variable address : std_logic_vector(31 downto 0); begin -- set the start address address := C_BASEADDR(0 to 15) & '0' & fifo & "0000" & "000000" & "00"; axi_write(address, data); end loadFifo; function ToString(constant Timeval : time) return string is variable StrPtr : line; begin write(StrPtr,Timeval); return StrPtr.all; end ToString; variable base_width : integer; variable exponent_width : integer; variable g0 : std_logic_vector(2047 downto 0) := (others=>'0'); variable g1 : std_logic_vector(2047 downto 0) := (others=>'0'); variable e0 : std_logic_vector(2047 downto 0) := (others=>'0'); variable e1 : std_logic_vector(2047 downto 0) := (others=>'0'); variable m : std_logic_vector(2047 downto 0) := (others=>'0'); variable R2 : std_logic_vector(2047 downto 0) := (others=>'0'); variable R : std_logic_vector(2047 downto 0) := (others=>'0'); variable gt0 : std_logic_vector(2047 downto 0) := (others=>'0'); variable gt1 : std_logic_vector(2047 downto 0) := (others=>'0'); variable gt01 : std_logic_vector(2047 downto 0) := (others=>'0'); variable one : std_logic_vector(2047 downto 0) := std_logic_vector(conv_unsigned(1, 2048)); variable result : std_logic_vector(2047 downto 0) := (others=>'0'); variable data_read : std_logic_vector(2047 downto 0) := (others=>'0'); variable good_value : boolean; variable param_count : integer := 0; variable temp_data : std_logic_vector(31 downto 0); variable timer : time; begin write(Lw, string'("----------------------------------------------")); writeline(output, Lw); write(Lw, string'("-- AXI BUS SIMULATION --")); writeline(output, Lw); write(Lw, string'("----------------------------------------------")); writeline(output, Lw); -- axi bus initialisation S_AXI_AWADDR <= (others=>'0'); S_AXI_AWVALID <= '0'; S_AXI_WDATA <= (others=>'0'); S_AXI_WVALID <= '0'; S_AXI_WSTRB <= (others=>'0'); S_AXI_BREADY <= '0'; S_AXI_ARADDR <= (others=>'0'); S_AXI_ARVALID <= '0'; S_AXI_RREADY <= '0'; -- control signals initialisation core_start <= '0'; core_exp_m <= '0'; core_x_sel_single <= "00"; core_y_sel_single <= "01"; core_dest_op_single <= "01"; core_p_sel <= "11"; core_modulus_sel <= '0'; -- reset S_AXI_ARESETN <= '0'; waitclk(10); S_AXI_ARESETN <= '1'; waitclk(20); while not endfile(input) loop readline(input, L); -- read next line next when L(1)='-'; -- skip comment lines -- read input values case param_count is when 0 => -- base width read(L, base_width, good_value); assert good_value report "Can not read base width" severity failure; assert false report "Simulating exponentiation" severity note; write(Lw, string'("----------------------------------------------")); writeline(output, Lw); write(Lw, string'("-- EXPONENTIATION --")); writeline(output, Lw); write(Lw, string'("----------------------------------------------")); writeline(output, Lw); write(Lw, string'("----- Variables used:")); writeline(output, Lw); write(Lw, string'("base width: ")); write(Lw, base_width); writeline(output, Lw); case (base_width) is when C_NR_BITS_TOTAL => when NR_BITS_HIGH => when NR_BITS_LOW => when others => write(Lw, string'("=> incompatible base width!!!")); writeline(output, Lw); assert false report "incompatible base width!!!" severity failure; end case; when 1 => -- exponent width read(L, exponent_width, good_value); assert good_value report "Can not read exponent width" severity failure; write(Lw, string'("exponent width: ")); write(Lw, exponent_width); writeline(output, Lw); when 2 => -- g0 hread(L, g0(base_width-1 downto 0), good_value); assert good_value report "Can not read g0! (wrong lenght?)" severity failure; write(Lw, string'("g0: ")); hwrite(Lw, g0(base_width-1 downto 0)); writeline(output, Lw); when 3 => -- g1 hread(L, g1(base_width-1 downto 0), good_value); assert good_value report "Can not read g1! (wrong lenght?)" severity failure; write(Lw, string'("g1: ")); hwrite(Lw, g1(base_width-1 downto 0)); writeline(output, Lw); when 4 => -- e0 hread(L, e0(exponent_width-1 downto 0), good_value); assert good_value report "Can not read e0! (wrong lenght?)" severity failure; write(Lw, string'("e0: ")); hwrite(Lw, e0(exponent_width-1 downto 0)); writeline(output, Lw); when 5 => -- e1 hread(L, e1(exponent_width-1 downto 0), good_value); assert good_value report "Can not read e1! (wrong lenght?)" severity failure; write(Lw, string'("e1: ")); hwrite(Lw, e1(exponent_width-1 downto 0)); writeline(output, Lw); when 6 => -- m hread(L, m(base_width-1 downto 0), good_value); assert good_value report "Can not read m! (wrong lenght?)" severity failure; write(Lw, string'("m: ")); hwrite(Lw, m(base_width-1 downto 0)); writeline(output, Lw); when 7 => -- R^2 hread(L, R2(base_width-1 downto 0), good_value); assert good_value report "Can not read R2! (wrong lenght?)" severity failure; write(Lw, string'("R2: ")); hwrite(Lw, R2(base_width-1 downto 0)); writeline(output, Lw); when 8 => -- R hread(L, R(base_width-1 downto 0), good_value); assert good_value report "Can not read R! (wrong lenght?)" severity failure; when 9 => -- gt0 hread(L, gt0(base_width-1 downto 0), good_value); assert good_value report "Can not read gt0! (wrong lenght?)" severity failure; when 10 => -- gt1 hread(L, gt1(base_width-1 downto 0), good_value); assert good_value report "Can not read gt1! (wrong lenght?)" severity failure; when 11 => -- gt01 hread(L, gt01(base_width-1 downto 0), good_value); assert good_value report "Can not read gt01! (wrong lenght?)" severity failure; -- select pipeline for all computations ---------------------------------------- writeline(output, Lw); write(Lw, string'("----- Selecting pipeline: ")); writeline(output, Lw); case (base_width) is when C_NR_BITS_TOTAL => core_p_sel <= "11"; write(Lw, string'(" Full pipeline selected")); when NR_BITS_HIGH => core_p_sel <= "10"; write(Lw, string'(" Upper pipeline selected")); when NR_BITS_LOW => core_p_sel <= "01"; write(Lw, string'(" Lower pipeline selected")); when others => write(Lw, string'(" Invallid bitwidth for design")); assert false report "impossible basewidth!" severity failure; end case; axi_write_control_reg; writeline(output, Lw); writeline(output, Lw); write(Lw, string'("----- Writing operands:")); writeline(output, Lw); -- load the modulus -------------------- loadOp(op_modulus, m); -- visual check needed write(Lw, string'(" m written")); writeline(output, Lw); -- load g0 ----------- loadOp(op_0, g0); -- verify readOp(op_0, data_read, base_width); if (g0(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then write(Lw, string'(" g0 written in operand_0")); writeline(output, Lw); else write(Lw, string'(" failed to write g0 to operand_0!")); writeline(output, Lw); assert false report "Load g0 to op0 data verify failed!!" severity failure; end if; -- load g1 ----------- loadOp(op_1, g1); -- verify readOp(op_1, data_read, base_width); if (g1(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then write(Lw, string'(" g1 written in operand_1")); writeline(output, Lw); else write(Lw, string'(" failed to write g1 to operand_1!")); writeline(output, Lw); assert false report "Load g1 to op1 data verify failed!!" severity failure; end if; -- load R2 ----------- loadOp(op_2, R2); -- verify readOp(op_2, data_read, base_width); if (R2(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then write(Lw, string'(" R^2 written in operand_2")); writeline(output, Lw); else write(Lw, string'(" failed to write R^2 to operand_2!")); writeline(output, Lw); assert false report "Load R2 to op2 data verify failed!!" severity failure; end if; -- load a=1 ------------ loadOp(op_3, one); -- verify readOp(op_3, data_read, base_width); if (one(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then write(Lw, string'(" 1 written in operand_3")); writeline(output, Lw); else write(Lw, string'(" failed to write 1 to operand_3!")); writeline(output, Lw); assert false report "Load 1 to op3 data verify failed!!" severity failure; end if; writeline(output, Lw); write(Lw, string'("----- Pre-computations: ")); writeline(output, Lw); -- compute gt0 --------------- core_x_sel_single <= "00"; -- g0 core_y_sel_single <= "10"; -- R^2 core_dest_op_single <= "00"; -- op_0 = (g0 * R) mod m axi_write_control_reg; timer := NOW; core_start <= '1'; axi_write_control_reg; core_start <= '0'; axi_write_control_reg; wait until IntrEvent = '1'; timer := NOW-timer; waitclk(10); readOp(op_0, data_read, base_width); write(Lw, string'(" Computed gt0: ")); hwrite(Lw, data_read(base_width-1 downto 0)); writeline(output, Lw); write(Lw, string'(" Read gt0: ")); hwrite(Lw, gt0(base_width-1 downto 0)); writeline(output, Lw); write(Lw, string'(" => calc time is ")); write(Lw, string'(ToString(timer))); writeline(output, Lw); write(Lw, string'(" => expected time is ")); write(Lw, (C_NR_STAGES_TOTAL+(2*(base_width-1)))*CLK_PERIOD); writeline(output, Lw); if (gt0(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then write(Lw, string'(" => gt0 is correct!")); writeline(output, Lw); else write(Lw, string'(" => Error: gt0 is incorrect!!!")); writeline(output, Lw); assert false report "gt0 is incorrect!!!" severity failure; end if; -- compute gt1 --------------- core_x_sel_single <= "01"; -- g1 core_y_sel_single <= "10"; -- R^2 core_dest_op_single <= "01"; -- op_1 = (g1 * R) mod m timer := NOW; core_start <= '1'; axi_write_control_reg; core_start <= '0'; axi_write_control_reg; wait until IntrEvent = '1'; timer := NOW-timer; waitclk(10); readOp(op_1, data_read, base_width); write(Lw, string'(" Computed gt1: ")); hwrite(Lw, data_read(base_width-1 downto 0)); writeline(output, Lw); write(Lw, string'(" Read gt1: ")); hwrite(Lw, gt1(base_width-1 downto 0)); writeline(output, Lw); write(Lw, string'(" => calc time is ")); write(Lw, string'(ToString(timer))); writeline(output, Lw); write(Lw, string'(" => expected time is ")); write(Lw, (C_NR_STAGES_TOTAL+(2*(base_width-1)))*CLK_PERIOD); writeline(output, Lw); if (gt1(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then write(Lw, string'(" => gt1 is correct!")); writeline(output, Lw); else write(Lw, string'(" => Error: gt1 is incorrect!!!")); writeline(output, Lw); assert false report "gt1 is incorrect!!!" severity failure; end if; -- compute a ------------- core_x_sel_single <= "10"; -- R^2 core_y_sel_single <= "11"; -- 1 core_dest_op_single <= "11"; -- op_3 = (R) mod m core_start <= '1'; axi_write_control_reg; timer := NOW; core_start <= '0'; axi_write_control_reg; wait until IntrEvent = '1'; timer := NOW-timer; waitclk(10); readOp(op_3, data_read, base_width); write(Lw, string'(" Computed a=(R)mod m: ")); hwrite(Lw, data_read(base_width-1 downto 0)); writeline(output, Lw); write(Lw, string'(" Read (R)mod m: ")); hwrite(Lw, R(base_width-1 downto 0)); writeline(output, Lw); write(Lw, string'(" => calc time is ")); write(Lw, string'(ToString(timer))); writeline(output, Lw); write(Lw, string'(" => expected time is ")); write(Lw, (C_NR_STAGES_TOTAL+(2*(base_width-1)))*CLK_PERIOD); writeline(output, Lw); if (R(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then write(Lw, string'(" => (R)mod m is correct!")); writeline(output, Lw); else write(Lw, string'(" => Error: (R)mod m is incorrect!!!")); writeline(output, Lw); assert false report "(R)mod m is incorrect!!!" severity failure; end if; -- compute gt01 --------------- core_x_sel_single <= "00"; -- gt0 core_y_sel_single <= "01"; -- gt1 core_dest_op_single <= "10"; -- op_2 = (gt0 * gt1) mod m core_start <= '1'; axi_write_control_reg; timer := NOW; core_start <= '0'; axi_write_control_reg; wait until IntrEvent = '1'; timer := NOW-timer; waitclk(10); readOp(op_2, data_read, base_width); write(Lw, string'(" Computed gt01: ")); hwrite(Lw, data_read(base_width-1 downto 0)); writeline(output, Lw); write(Lw, string'(" Read gt01: ")); hwrite(Lw, gt01(base_width-1 downto 0)); writeline(output, Lw); write(Lw, string'(" => calc time is ")); write(Lw, string'(ToString(timer))); writeline(output, Lw); write(Lw, string'(" => expected time is ")); write(Lw, (C_NR_STAGES_TOTAL+(2*(base_width-1)))*CLK_PERIOD); writeline(output, Lw); if (gt01(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then write(Lw, string'(" => gt01 is correct!")); writeline(output, Lw); else write(Lw, string'(" => Error: gt01 is incorrect!!!")); writeline(output, Lw); assert false report "gt01 is incorrect!!!" severity failure; end if; -- load exponent fifo ---------------------- writeline(output, Lw); write(Lw, string'("----- Loading exponent fifo: ")); writeline(output, Lw); for i in (exponent_width/16)-1 downto 0 loop temp_data := e1((i*16)+15 downto (i*16)) & e0((i*16)+15 downto (i*16)); LoadFifo(temp_data); end loop; waitclk(10); write(Lw, string'(" => Done")); writeline(output, Lw); -- start exponentiation ------------------------ writeline(output, Lw); write(Lw, string'("----- Starting exponentiation: ")); writeline(output, Lw); core_exp_m <= '1'; timer := NOW; core_start <= '1'; axi_write_control_reg; core_start <= '0'; axi_write_control_reg; wait until IntrEvent='1'; timer := NOW-timer; waitclk(10); write(Lw, string'(" => calc time is ")); write(Lw, string'(ToString(timer))); writeline(output, Lw); write(Lw, string'(" => expected time is ")); write(Lw, ((C_NR_STAGES_TOTAL+(2*(base_width-1)))*CLK_PERIOD*7*exponent_width)/4); writeline(output, Lw); write(Lw, string'(" => Done")); core_exp_m <= '0'; writeline(output, Lw); -- post-computations --------------------- writeline(output, Lw); write(Lw, string'("----- Post-computations: ")); writeline(output, Lw); -- load in 1 to operand 2 loadOp(op_2, one); -- verify readOp(op_2, data_read, base_width); if (one(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then write(Lw, string'(" 1 written in operand_2")); writeline(output, Lw); else write(Lw, string'(" failed to write 1 to operand_2!")); writeline(output, Lw); assert false report "Load 1 to op2 data verify failed!!" severity failure; end if; -- compute result core_x_sel_single <= "11"; -- a core_y_sel_single <= "10"; -- 1 core_dest_op_single <= "11"; -- op_3 = (a) mod m timer := NOW; core_start <= '1'; axi_write_control_reg; core_start <= '0'; axi_write_control_reg; wait until IntrEvent = '1'; timer := NOW-timer; waitclk(10); readOp(op_3, data_read, base_width); write(Lw, string'(" Computed result: ")); hwrite(Lw, data_read(base_width-1 downto 0)); writeline(output, Lw); write(Lw, string'(" => calc time is ")); write(Lw, string'(ToString(timer))); writeline(output, Lw); write(Lw, string'(" => expected time is ")); write(Lw, (C_NR_STAGES_TOTAL+(2*(base_width-1)))*CLK_PERIOD); writeline(output, Lw); when 12 => -- check with result hread(L, result(base_width-1 downto 0), good_value); assert good_value report "Can not read result! (wrong lenght?)" severity failure; writeline(output, Lw); write(Lw, string'("----- verifying result: ")); writeline(output, Lw); write(Lw, string'(" Read result: ")); hwrite(Lw, result(base_width-1 downto 0)); writeline(output, Lw); write(Lw, string'(" Computed result: ")); hwrite(Lw, data_read(base_width-1 downto 0)); writeline(output, Lw); if (result(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then write(Lw, string'(" => Result is correct!")); writeline(output, Lw); else write(Lw, string'(" Error: result is incorrect!!!")); writeline(output, Lw); assert false report "result is incorrect!!!" severity failure; end if; writeline(output, Lw); when others => assert false report "undefined state!" severity failure; end case; if (param_count = 12) then param_count := 0; else param_count := param_count+1; end if; end loop; wait for 1 us; assert false report "End of simulation" severity failure; end process; ------------------------- -- Unit Under Test ------------------------- uut : entity work.msec_ipcore_axilite generic map( C_NR_BITS_TOTAL => C_NR_BITS_TOTAL, C_NR_STAGES_TOTAL => C_NR_STAGES_TOTAL, C_NR_STAGES_LOW => C_NR_STAGES_LOW, C_SPLIT_PIPELINE => C_SPLIT_PIPELINE, C_FIFO_AW => C_FIFO_AW, C_MEM_STYLE => C_MEM_STYLE, -- xil_prim, generic, asym are valid options C_FPGA_MAN => C_FPGA_MAN, -- xilinx, altera are valid options C_BASEADDR => C_BASEADDR, C_HIGHADDR => C_HIGHADDR ) port map( --USER ports calc_time => calc_time, IntrEvent => IntrEvent, core_clk => core_clk, ------------------------- -- AXI4lite interface ------------------------- --- Global signals S_AXI_ACLK => S_AXI_ACLK, S_AXI_ARESETN => S_AXI_ARESETN, --- Write address channel S_AXI_AWADDR => S_AXI_AWADDR, S_AXI_AWVALID => S_AXI_AWVALID, S_AXI_AWREADY => S_AXI_AWREADY, --- Write data channel S_AXI_WDATA => S_AXI_WDATA, S_AXI_WVALID => S_AXI_WVALID, S_AXI_WREADY => S_AXI_WREADY, S_AXI_WSTRB => S_AXI_WSTRB, --- Write response channel S_AXI_BVALID => S_AXI_BVALID, S_AXI_BREADY => S_AXI_BREADY, S_AXI_BRESP => S_AXI_BRESP, --- Read address channel S_AXI_ARADDR => S_AXI_ARADDR, S_AXI_ARVALID => S_AXI_ARVALID, S_AXI_ARREADY => S_AXI_ARREADY, --- Read data channel S_AXI_RDATA => S_AXI_RDATA, S_AXI_RVALID => S_AXI_RVALID, S_AXI_RREADY => S_AXI_RREADY, S_AXI_RRESP => S_AXI_RRESP ); end arch;