URL
https://opencores.org/ocsvn/mod_sim_exp/mod_sim_exp/trunk
Subversion Repositories mod_sim_exp
[/] [mod_sim_exp/] [trunk/] [rtl/] [vhdl/] [core/] [autorun_cntrl.vhd] - Rev 95
Compare with Previous | Blame | View Log
---------------------------------------------------------------------- ---- autorun_ctrl ---- ---- ---- ---- This file is part of the ---- ---- Modular Simultaneous Exponentiation Core project ---- ---- http://www.opencores.org/cores/mod_sim_exp/ ---- ---- ---- ---- Description ---- ---- autorun control unit for a pipelined montgomery ---- ---- multiplier ---- ---- ---- ---- Dependencies: none ---- ---- ---- ---- Authors: ---- ---- - Geoffrey Ottoy, DraMCo research group ---- ---- - Jonas De Craene, JonasDC@opencores.org ---- ---- ---- ---------------------------------------------------------------------- ---- ---- ---- Copyright (C) 2011 DraMCo research group and OPENCORES.ORG ---- ---- ---- ---- This source file may be used and distributed without ---- ---- restriction provided that this copyright statement is not ---- ---- removed from the file and that any derivative work contains ---- ---- the original copyright notice and the associated disclaimer. ---- ---- ---- ---- This source file is free software; you can redistribute it ---- ---- and/or modify it under the terms of the GNU Lesser General ---- ---- Public License as published by the Free Software Foundation; ---- ---- either version 2.1 of the License, or (at your option) any ---- ---- later version. ---- ---- ---- ---- This source is distributed in the hope that it will be ---- ---- useful, but WITHOUT ANY WARRANTY; without even the implied ---- ---- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ---- ---- PURPOSE. See the GNU Lesser General Public License for more ---- ---- details. ---- ---- ---- ---- You should have received a copy of the GNU Lesser General ---- ---- Public License along with this source; if not, download it ---- ---- from http://www.opencores.org/lgpl.shtml ---- ---- ---- ---------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; entity autorun_cntrl is port ( clk : in std_logic; reset : in std_logic; start : in std_logic; done : out std_logic; op_sel : out std_logic_vector (1 downto 0); start_multiplier : out std_logic; multiplier_done : in std_logic; read_buffer : out std_logic; buffer_din : in std_logic_vector (31 downto 0); buffer_empty : in std_logic ); end autorun_cntrl; architecture Behavioral of autorun_cntrl is signal bit_counter_i : integer range 0 to 15 := 0; signal bit_counter_0_i : std_logic; signal bit_counter_15_i : std_logic; signal next_bit_i : std_logic := '0'; signal start_cycle_i : std_logic := '0'; signal start_cycle_del_i : std_logic; signal done_i : std_logic; signal running_i : std_logic; signal start_multiplier_i : std_logic; signal start_multiplier_del_i : std_logic; signal mult_done_del_i : std_logic; signal e0_bit_i : std_logic; signal e1_bit_i : std_logic; signal e_bits_i : std_logic_vector(1 downto 0); signal e_bits_0_i : std_logic; signal cycle_counter_i : std_logic; signal op_sel_sel_i : std_logic; signal op_sel_i : std_logic_vector(1 downto 0); signal exponent_shift_i : std_logic_vector(31 downto 0); signal read_buffer_i : std_logic; signal read_buffer_i_d : std_logic; begin done <= done_i; read_buffer <= read_buffer_i; -- generate the index to select a single bit from the two exponents SYNC_BIT_COUNTER : process (clk, reset) begin if reset = '1' then bit_counter_i <= 15; elsif rising_edge(clk) then if start = '1' then -- make sure we start @ bit 0 bit_counter_i <= 15; elsif next_bit_i = '1' then -- count if bit_counter_i = 0 then bit_counter_i <= 15; else bit_counter_i <= bit_counter_i - 1; end if; end if; end if; end process SYNC_BIT_COUNTER; -- process that implements the shift register for the exponents -- more performant than former mux implementation EXP_SHIFTER : process (clk, reset) begin if reset = '1' then exponent_shift_i <= (others => '0'); elsif rising_edge(clk) then read_buffer_i_d <= read_buffer_i; -- delay read_buffer signal one clock if read_buffer_i_d = '1' then -- after new buffer read, shift in new bits exponent_shift_i <= buffer_din; elsif next_bit_i = '1' then -- count exponent_shift_i(31 downto 1) <= exponent_shift_i(30 downto 0); end if; end if; end process EXP_SHIFTER; -- signal when bit_counter_i = 0 bit_counter_0_i <= '1' when bit_counter_i = 0 else '0'; bit_counter_15_i <= '1' when bit_counter_i = 15 else '0'; -- the bits... e0_bit_i <= exponent_shift_i(15); e1_bit_i <= exponent_shift_i(31); e_bits_i <= e0_bit_i & e1_bit_i; e_bits_0_i <= '1' when (e_bits_i = "00") else '0'; -- operand pre-select with e_bits_i select op_sel_i <= "00" when "10", -- gt0 "01" when "01", -- gt1 "10" when "11", -- gt01 "11" when others; -- select operands op_sel_sel_i <= '0' when e_bits_0_i = '1' else (cycle_counter_i); op_sel <= op_sel_i when op_sel_sel_i = '1' else "11"; -- process that drives running_i signal ('1' when in autorun, '0' when not) RUNNING_PROC : process(clk, reset) begin if reset = '1' then running_i <= '0'; elsif rising_edge(clk) then running_i <= start or (running_i and (not done_i)); end if; end process RUNNING_PROC; -- ctrl logic start_multiplier_i <= start_cycle_del_i or (mult_done_del_i and (cycle_counter_i) and (not e_bits_0_i)); read_buffer_i <= start_cycle_del_i and bit_counter_15_i and running_i; -- pop new word from fifo when bit_counter is back at '15' start_multiplier <= start_multiplier_del_i and running_i; -- start/stop logic start_cycle_i <= (start and (not buffer_empty)) or next_bit_i; -- start pulse (external or internal) done_i <= (start and buffer_empty) or (next_bit_i and bit_counter_0_i and buffer_empty); -- stop when buffer is empty next_bit_i <= (mult_done_del_i and e_bits_0_i) or (mult_done_del_i and (not e_bits_0_i) and (not cycle_counter_i)); -- process for delaying signals with 1 clock cycle DEL_PROC : process(clk) begin if rising_edge(clk) then start_multiplier_del_i <= start_multiplier_i; start_cycle_del_i <= start_cycle_i; mult_done_del_i <= multiplier_done; end if; end process DEL_PROC; -- process for cycle counter CYCLE_CNTR_PROC : process(clk, start, reset) begin if start = '1' or reset = '1' then cycle_counter_i <= '0'; elsif rising_edge(clk) then if (e_bits_0_i = '0') and (multiplier_done = '1') then cycle_counter_i <= not cycle_counter_i; elsif (e_bits_0_i = '1') and (multiplier_done = '1') then cycle_counter_i <= '0'; else cycle_counter_i <= cycle_counter_i; end if; end if; end process CYCLE_CNTR_PROC; end Behavioral;