OpenCores
URL https://opencores.org/ocsvn/mod_sim_exp/mod_sim_exp/trunk

Subversion Repositories mod_sim_exp

[/] [mod_sim_exp/] [trunk/] [rtl/] [vhdl/] [core/] [mont_ctrl.vhd] - Rev 95

Compare with Previous | Blame | View Log

----------------------------------------------------------------------  
----  mont_ctrl                                                   ---- 
----                                                              ---- 
----  This file is part of the                                    ----
----    Modular Simultaneous Exponentiation Core project          ---- 
----    http://www.opencores.org/cores/mod_sim_exp/               ---- 
----                                                              ---- 
----  Description                                                 ---- 
----    control unit for a pipelined montgomery multiplier, with  ----
----    split pipeline operation and "auto-run" support           ----
----                                                              ----
----  Dependencies:                                               ----
----    - autorun_cntrl                                           ----
----                                                              ----
----  Authors:                                                    ----
----      - Geoffrey Ottoy, DraMCo research group                 ----
----      - Jonas De Craene, JonasDC@opencores.org                ---- 
----                                                              ---- 
---------------------------------------------------------------------- 
----                                                              ---- 
---- Copyright (C) 2011 DraMCo research group and OPENCORES.ORG   ---- 
----                                                              ---- 
---- This source file may be used and distributed without         ---- 
---- restriction provided that this copyright statement is not    ---- 
---- removed from the file and that any derivative work contains  ---- 
---- the original copyright notice and the associated disclaimer. ---- 
----                                                              ---- 
---- This source file is free software; you can redistribute it   ---- 
---- and/or modify it under the terms of the GNU Lesser General   ---- 
---- Public License as published by the Free Software Foundation; ---- 
---- either version 2.1 of the License, or (at your option) any   ---- 
---- later version.                                               ---- 
----                                                              ---- 
---- This source is distributed in the hope that it will be       ---- 
---- useful, but WITHOUT ANY WARRANTY; without even the implied   ---- 
---- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      ---- 
---- PURPOSE.  See the GNU Lesser General Public License for more ---- 
---- details.                                                     ---- 
----                                                              ---- 
---- You should have received a copy of the GNU Lesser General    ---- 
---- Public License along with this source; if not, download it   ---- 
---- from http://www.opencores.org/lgpl.shtml                     ---- 
----                                                              ---- 
----------------------------------------------------------------------
 
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
 
library mod_sim_exp;
use mod_sim_exp.mod_sim_exp_pkg.all;
 
 
-- This module controls the montgommery mutliplier and controls traffic between
-- RAM and multiplier. Also contains the autorun logic for exponentiations.
entity mont_ctrl is
  port (
    clk   : in std_logic;
    reset : in std_logic;
      -- bus side
    start           : in std_logic;
    x_sel_single    : in std_logic_vector(1 downto 0);
    y_sel_single    : in std_logic_vector(1 downto 0);
    run_auto        : in std_logic;
    op_buffer_empty : in std_logic;
    op_sel_buffer   : in std_logic_vector(31 downto 0);
    read_buffer     : out std_logic;
    done            : out std_logic;
    calc_time       : out std_logic;
      -- multiplier side
    op_sel           : out std_logic_vector(1 downto 0);
    load_x           : out std_logic;
    load_result      : out std_logic;
    start_multiplier : out std_logic;
    multiplier_ready : in std_logic
  );
end mont_ctrl;
 
 
architecture Behavioral of mont_ctrl is
  signal start_d            : std_logic; -- delayed version of start input
  signal start_pulse        : std_logic;
  signal auto_start_pulse   : std_logic;
  signal start_multiplier_i : std_logic;
  signal start_up_counter   : std_logic_vector(3 downto 0) := "1000"; -- used in op_sel at multiplier start
 
  signal calc_time_i : std_logic; -- high ('1') during multiplication
 
  signal x_sel        : std_logic_vector(1 downto 0); -- the operand used as x input
  signal y_sel        : std_logic_vector(1 downto 0); -- the operand used as y input
  signal x_sel_buffer : std_logic_vector(1 downto 0); -- x operand as specified by fifo buffer (autorun)
 
  signal auto_done              : std_logic;
  signal start_auto             : std_logic;
  signal auto_multiplier_done_i : std_logic;
  signal multiplier_ready_d     : std_logic;
begin
 
  -----------------------------------------------------------------------------------
  -- Processes related to starting and stopping the multiplier
  -----------------------------------------------------------------------------------
  -- generate a start pulse (duration 1 clock cycle) based on ext. start sig
  START_PULSE_PROC : process(clk)
  begin
    if rising_edge(clk) then
      start_d <= start;
    end if;
  end process START_PULSE_PROC;
 
  start_pulse <= start and (not start_d);
  start_auto <= start_pulse and run_auto;
 
  -- to start the multiplier we first need to select the x_operand and
  -- clock it in the x shift register
  -- the we select the y_operand and start the multiplier
 
  -- start_up_counter
  --   default state : "1000"
  --   at start pulse counter resets to 0 and counts up to "1000"
  START_MULT_PROC : process(clk, reset)
  begin
    if reset = '1' then
      start_up_counter <= "1000";
    elsif rising_edge(clk) then
      if start_pulse = '1' or auto_start_pulse = '1' then
        start_up_counter <= "0000";
      elsif start_up_counter(3) /= '1' then
        start_up_counter <= start_up_counter + '1';
      else
        start_up_counter <= "1000";
      end if;
    end if;
  end process;
 
  -- select operands (autorun/single run)
  x_sel <= x_sel_buffer when (run_auto = '1') else x_sel_single;
  y_sel <= "11" when (run_auto = '1') else y_sel_single; -- y is operand3 in auto mode
 
  -- clock operands to operand_mem output (first x, then y)
  with start_up_counter(3 downto 2) select
    op_sel <= x_sel when "00",  -- start_up_counter="00xx" (first 4 cycles)
  	          y_sel when others;  -- 
  load_x <= (not start_up_counter(2)) and start_up_counter(1) and start_up_counter(0); -- latch x operand if start_up_counter="x011"
 
  -- start multiplier when start_up_counter="x111"
  start_multiplier_i <= start_up_counter(2) and start_up_counter(1) and start_up_counter(0);
  start_multiplier <= start_multiplier_i;
 
  -- signal calc time is high during multiplication
  CALC_TIME_PROC : process(clk, reset)
  begin
    if reset = '1' then
      calc_time_i <= '0';
    elsif rising_edge(clk) then
      if start_multiplier_i = '1' then
        calc_time_i <= '1';
      elsif multiplier_ready = '1' then
        calc_time_i <= '0';
      else
        calc_time_i <= calc_time_i;
      end if;
    end if;
  end process CALC_TIME_PROC;
  calc_time <= calc_time_i;
 
  -- what happens when a multiplication has finished
  -- delay result writeback
  RES_DEL_PROC : process(clk)
  begin
    if rising_edge(clk) then
      multiplier_ready_d <= multiplier_ready;
      load_result <= multiplier_ready_d;
    end if;
  end process;
  -- ignore multiplier_ready when in automode, the logic will assert auto_done when finished
  done <= ((not run_auto) and multiplier_ready) or auto_done; 
 
  -----------------------------------------------------------------------------------
  -- Processes related to op_buffer cntrl and auto_run mode
  -- start_auto     -> start autorun mode operation
  -- auto_start_pulse <- autorun logic starts the multiplier
  -- auto_done        <- autorun logic signals when autorun operation has finished
  -- x_sel_buffer   <- autorun logic determines which operand is used as x
 
  -- check buffer empty signal
  -----------------------------------------------------------------------------------
 
  -- multiplier_ready is only passed to autorun control when in autorun mode
  auto_multiplier_done_i <= (multiplier_ready and run_auto);
 
  autorun_control_logic : autorun_cntrl port map(
    clk              => clk,
    reset            => reset,
    start            => start_auto,
    done             => auto_done,
    op_sel           => x_sel_buffer,
    start_multiplier => auto_start_pulse,
    multiplier_done  => auto_multiplier_done_i,
    read_buffer      => read_buffer,
    buffer_din       => op_sel_buffer,
    buffer_empty     => op_buffer_empty
  );
 
end Behavioral;
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.