URL
https://opencores.org/ocsvn/mod_sim_exp/mod_sim_exp/trunk
Subversion Repositories mod_sim_exp
[/] [mod_sim_exp/] [trunk/] [rtl/] [vhdl/] [core/] [operand_ram_gen.vhd] - Rev 94
Compare with Previous | Blame | View Log
---------------------------------------------------------------------- ---- operand_ram_gen ---- ---- ---- ---- This file is part of the ---- ---- Modular Simultaneous Exponentiation Core project ---- ---- http://www.opencores.org/cores/mod_sim_exp/ ---- ---- ---- ---- Description ---- ---- BRAM memory and logic to the store the operands ---- ---- for the montgomery multiplier ---- ---- ---- ---- Dependencies: ---- ---- - tdpram_generic ---- ---- ---- ---- Authors: ---- ---- - Geoffrey Ottoy, DraMCo research group ---- ---- - Jonas De Craene, JonasDC@opencores.org ---- ---- ---- ---------------------------------------------------------------------- ---- ---- ---- Copyright (C) 2011 DraMCo research group and OPENCORES.ORG ---- ---- ---- ---- This source file may be used and distributed without ---- ---- restriction provided that this copyright statement is not ---- ---- removed from the file and that any derivative work contains ---- ---- the original copyright notice and the associated disclaimer. ---- ---- ---- ---- This source file is free software; you can redistribute it ---- ---- and/or modify it under the terms of the GNU Lesser General ---- ---- Public License as published by the Free Software Foundation; ---- ---- either version 2.1 of the License, or (at your option) any ---- ---- later version. ---- ---- ---- ---- This source is distributed in the hope that it will be ---- ---- useful, but WITHOUT ANY WARRANTY; without even the implied ---- ---- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ---- ---- PURPOSE. See the GNU Lesser General Public License for more ---- ---- details. ---- ---- ---- ---- You should have received a copy of the GNU Lesser General ---- ---- Public License along with this source; if not, download it ---- ---- from http://www.opencores.org/lgpl.shtml ---- ---- ---- ---------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; library mod_sim_exp; use mod_sim_exp.mod_sim_exp_pkg.all; use mod_sim_exp.std_functions.all; -- behavorial description of a RAM to hold the operands, with -- adjustable width and depth(nr of operands) entity operand_ram_gen is generic( width : integer := 1536; -- width of the operands depth : integer := 4 -- nr of operands ); port( -- global ports collision : out std_logic; -- 1 if simultaneous write on RAM -- bus side connections (32-bit serial) bus_clk : in std_logic; write_operand : in std_logic; -- write_enable operand_in_sel : in std_logic_vector(log2(depth)-1 downto 0); -- operand to write to operand_addr : in std_logic_vector(log2(width/32)-1 downto 0); -- address of operand word to write operand_in : in std_logic_vector(31 downto 0); -- operand word(32-bit) to write result_out : out std_logic_vector(31 downto 0); -- operand out, reading is always result operand operand_out_sel : in std_logic_vector(log2(depth)-1 downto 0); -- operand to give to multiplier -- multiplier side connections (width-bit parallel) core_clk : in std_logic; result_dest_op : in std_logic_vector(log2(depth)-1 downto 0); -- operand select for result operand_out : out std_logic_vector(width-1 downto 0); -- operand out to multiplier write_result : in std_logic; -- write enable for multiplier side result_in : in std_logic_vector(width-1 downto 0) -- result to write from multiplier ); end operand_ram_gen; architecture Behavioral of operand_ram_gen is constant nrRAMs : integer := width/32; constant RAMselect_aw : integer := log2(nrRAMs); constant RAMdepth_aw : integer := log2(depth); constant total_aw : integer := RAMdepth_aw+RAMselect_aw; -- total RAM structure signals signal weA_RAM : std_logic_vector(nrRAMs-1 downto 0); type wordsplit is array (nrRAMs-1 downto 0) of std_logic_vector(31 downto 0); signal doutA_RAM : wordsplit; --- PORT A : 32-bit write | (width)-bit read signal dinA : std_logic_vector(31 downto 0); signal doutA : std_logic_vector(31 downto 0); signal weA : std_logic; signal addrA : std_logic_vector(RAMselect_aw-1 downto 0); signal op_selA : std_logic_vector(RAMdepth_aw-1 downto 0); --- PORT B : 32-bit read | (width)-bit write signal dinB : std_logic_vector(width-1 downto 0); signal doutB : std_logic_vector(width-1 downto 0); signal weB : std_logic; signal addrB : std_logic_vector(RAMselect_aw-1 downto 0); signal op_selB : std_logic_vector(RAMdepth_aw-1 downto 0); signal write_operand_i : std_logic; signal op_selB_i : std_logic_vector(RAMdepth_aw-1 downto 0); begin -- WARNING: Very Important! -- wea & web signals must never be high at the same time !! -- web has priority write_operand_i <= write_operand and not write_result; -- portB has write priority collision <= write_operand and write_result; -- the dual port ram has a depth of 4 (each layer contains an operand) -- result is always stored in position 3 -- doutb is always result with write_result select op_selB_i <= result_dest_op when '1', operand_out_sel when others; -- map signals to RAM -- PORTA weA <= write_operand_i; op_selA <= operand_in_sel; addrA <= operand_addr; dinA <= operand_in; result_out <= doutA; -- PORT B weB <= write_result; op_selB <= op_selB_i; -- portB locked to result operand addrB <= operand_addr; dinB <= result_in; operand_out <= doutB; -- generate (width/32) blocks of 32-bit ram with a given depth -- these rams are tyed together to form the following structure -- True dual port ram: -- - PORT A : 32-bit write | 32-bit read -- - PORT B : (width)-bit read | (width)-bit write -- ^ ^ -- addres addr op_sel -- ramblocks : for i in 0 to nrRAMs-1 generate ramblock: tdpram_generic generic map( depth => depth ) port map( -- port A : 32-bit clkA => bus_clk, addrA => op_selA, weA => weA_RAM(i), dinA => dinA, doutA => doutA_RAM(i), -- port B : 32-bit clkB => core_clk, addrB => op_selB, weB => weB, dinB => dinB(((i+1)*32)-1 downto i*32), doutB => doutB(((i+1)*32)-1 downto i*32) ); -- demultiplexer for write enable A signal process (addrA, weA) begin if addrA(RAMselect_aw-1 downto 0) = conv_std_logic_vector(i,RAMselect_aw) then weA_RAM(i) <= weA; else weA_RAM(i) <= '0'; end if; end process; end generate; -- PORTB 32-bit read doutA <= doutA_RAM(conv_integer(addrA)) when (conv_integer(addrA)<nrRAMs) else (others=>'0'); end Behavioral;