URL
https://opencores.org/ocsvn/mod_sim_exp/mod_sim_exp/trunk
Subversion Repositories mod_sim_exp
[/] [mod_sim_exp/] [trunk/] [rtl/] [vhdl/] [interface/] [plb/] [user_logic.vhd] - Rev 20
Go to most recent revision | Compare with Previous | Blame | View Log
------------------------------------------------------------------------------ -- user_logic.vhd - entity/architecture pair ------------------------------------------------------------------------------ -- -- *************************************************************************** -- ** Copyright (c) 1995-2009 Xilinx, Inc. All rights reserved. ** -- ** ** -- ** Xilinx, Inc. ** -- ** XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" ** -- ** AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND ** -- ** SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, ** -- ** OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, ** -- ** APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION ** -- ** THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, ** -- ** AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE ** -- ** FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY ** -- ** WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE ** -- ** IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR ** -- ** REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF ** -- ** INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ** -- ** FOR A PARTICULAR PURPOSE. ** -- ** ** -- *************************************************************************** -- ------------------------------------------------------------------------------ -- Filename: user_logic.vhd -- Version: 2.00.a -- Description: User logic. -- Date: Thu May 03 09:53:36 2012 (by Create and Import Peripheral Wizard) -- VHDL Standard: VHDL'93 ------------------------------------------------------------------------------ -- Naming Conventions: -- active low signals: "*_n" -- clock signals: "clk", "clk_div#", "clk_#x" -- reset signals: "rst", "rst_n" -- generics: "C_*" -- user defined types: "*_TYPE" -- state machine next state: "*_ns" -- state machine current state: "*_cs" -- combinatorial signals: "*_com" -- pipelined or register delay signals: "*_d#" -- counter signals: "*cnt*" -- clock enable signals: "*_ce" -- internal version of output port: "*_i" -- device pins: "*_pin" -- ports: "- Names begin with Uppercase" -- processes: "*_PROCESS" -- component instantiations: "<ENTITY_>I_<#|FUNC>" ------------------------------------------------------------------------------ -- DO NOT EDIT BELOW THIS LINE -------------------- library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; library proc_common_v3_00_a; use proc_common_v3_00_a.proc_common_pkg.all; -- DO NOT EDIT ABOVE THIS LINE -------------------- --USER libraries added here ------------------------------------------------------------------------------ -- Entity section ------------------------------------------------------------------------------ -- Definition of Generics: -- C_SLV_AWIDTH -- Slave interface address bus width -- C_SLV_DWIDTH -- Slave interface data bus width -- C_NUM_REG -- Number of software accessible registers -- C_NUM_MEM -- Number of memory spaces -- C_NUM_INTR -- Number of interrupt event -- -- Definition of Ports: -- Bus2IP_Clk -- Bus to IP clock -- Bus2IP_Reset -- Bus to IP reset -- Bus2IP_Addr -- Bus to IP address bus -- Bus2IP_CS -- Bus to IP chip select for user logic memory selection -- Bus2IP_RNW -- Bus to IP read/not write -- Bus2IP_Data -- Bus to IP data bus -- Bus2IP_BE -- Bus to IP byte enables -- Bus2IP_RdCE -- Bus to IP read chip enable -- Bus2IP_WrCE -- Bus to IP write chip enable -- IP2Bus_Data -- IP to Bus data bus -- IP2Bus_RdAck -- IP to Bus read transfer acknowledgement -- IP2Bus_WrAck -- IP to Bus write transfer acknowledgement -- IP2Bus_Error -- IP to Bus error response -- IP2Bus_IntrEvent -- IP to Bus interrupt event ------------------------------------------------------------------------------ entity user_logic is generic ( -- ADD USER GENERICS BELOW THIS LINE --------------- --USER generics added here -- ADD USER GENERICS ABOVE THIS LINE --------------- -- DO NOT EDIT BELOW THIS LINE --------------------- -- Bus protocol parameters, do not add to or delete C_SLV_AWIDTH : integer := 32; C_SLV_DWIDTH : integer := 32; C_NUM_REG : integer := 1; C_NUM_MEM : integer := 6; C_NUM_INTR : integer := 1 -- DO NOT EDIT ABOVE THIS LINE --------------------- ); port ( -- ADD USER PORTS BELOW THIS LINE ------------------ --USER ports added here calc_time : out std_logic; -- ctrl_sigs : out std_logic_vector( downto ); -- ADD USER PORTS ABOVE THIS LINE ------------------ -- DO NOT EDIT BELOW THIS LINE --------------------- -- Bus protocol ports, do not add to or delete Bus2IP_Clk : in std_logic; Bus2IP_Reset : in std_logic; Bus2IP_Addr : in std_logic_vector(0 to C_SLV_AWIDTH-1); Bus2IP_CS : in std_logic_vector(0 to C_NUM_MEM-1); Bus2IP_RNW : in std_logic; Bus2IP_Data : in std_logic_vector(0 to C_SLV_DWIDTH-1); Bus2IP_BE : in std_logic_vector(0 to C_SLV_DWIDTH/8-1); Bus2IP_RdCE : in std_logic_vector(0 to C_NUM_REG-1); Bus2IP_WrCE : in std_logic_vector(0 to C_NUM_REG-1); IP2Bus_Data : out std_logic_vector(0 to C_SLV_DWIDTH-1); IP2Bus_RdAck : out std_logic; IP2Bus_WrAck : out std_logic; IP2Bus_Error : out std_logic; IP2Bus_IntrEvent : out std_logic_vector(0 to C_NUM_INTR-1) -- DO NOT EDIT ABOVE THIS LINE --------------------- ); attribute SIGIS : string; attribute SIGIS of Bus2IP_Clk : signal is "CLK"; attribute SIGIS of Bus2IP_Reset : signal is "RST"; end entity user_logic; ------------------------------------------------------------------------------ -- Architecture section ------------------------------------------------------------------------------ architecture IMP of user_logic is --USER signal declarations added here, as needed for user logic component multiplier_core port( clk : in std_logic; reset : in std_logic; -- operand memory interface (plb shared memory) write_enable : in std_logic; data_in : in std_logic_vector (31 downto 0); rw_address : in std_logic_vector (8 downto 0); data_out : out std_logic_vector (31 downto 0); collision : out std_logic; -- op_sel fifo interface fifo_din : in std_logic_vector (31 downto 0); fifo_push : in std_logic; fifo_full : out std_logic; fifo_nopush : out std_logic; -- ctrl signals start : in std_logic; run_auto : in std_logic; ready : out std_logic; x_sel_single : in std_logic_vector (1 downto 0); y_sel_single : in std_logic_vector (1 downto 0); dest_op_single : in std_logic_vector (1 downto 0); p_sel : in std_logic_vector (1 downto 0); calc_time : out std_logic ); end component; ------------------------------------------------------------------ -- Signals for multiplier core slave model s/w accessible register ------------------------------------------------------------------ signal slv_reg0 : std_logic_vector(0 to C_SLV_DWIDTH-1); signal slv_reg_write_sel : std_logic_vector(0 to 0); signal slv_reg_read_sel : std_logic_vector(0 to 0); signal slv_ip2bus_data : std_logic_vector(0 to C_SLV_DWIDTH-1); signal slv_read_ack : std_logic; signal slv_write_ack : std_logic; signal load_flags : std_logic; ------------------------------------------------------------------ -- Signals for multiplier core interrupt ------------------------------------------------------------------ signal core_interrupt : std_logic_vector(0 to 0); signal core_fifo_full : std_logic; signal core_fifo_nopush : std_logic; signal core_ready : std_logic; signal core_mem_collision : std_logic; ------------------------------------------------------------------ -- Signals for multiplier core control ------------------------------------------------------------------ signal core_start : std_logic; signal core_run_auto : std_logic; signal core_p_sel : std_logic_vector(1 downto 0); signal core_dest_op_single : std_logic_vector(1 downto 0); signal core_x_sel_single : std_logic_vector(1 downto 0); signal core_y_sel_single : std_logic_vector(1 downto 0); signal core_flags : std_logic_vector(15 downto 0); ------------------------------------------------------------------ -- Signals for multiplier core memory space ------------------------------------------------------------------ signal mem_address : std_logic_vector(0 to 5); signal mem_select : std_logic_vector(0 to 5); signal mem_read_enable : std_logic; signal mem_read_enable_dly1 : std_logic; signal mem_read_req : std_logic; signal mem_ip2bus_data : std_logic_vector(0 to C_SLV_DWIDTH-1); signal mem_read_ack_dly1 : std_logic; signal mem_read_ack : std_logic; signal mem_write_ack : std_logic; signal core_rw_address : std_logic_vector (8 downto 0); signal core_data_in : std_logic_vector(31 downto 0); signal core_fifo_din : std_logic_vector(31 downto 0); signal sel_mno : std_logic; signal sel_op : std_logic_vector(1 downto 0); signal core_data_out : std_logic_vector(31 downto 0); signal core_write_enable : std_logic; signal core_fifo_push : std_logic; begin --USER logic implementation added here --ctrl_sigs <= ------------------------------------------ -- Example code to read/write user logic slave model s/w accessible registers -- -- Note: -- The example code presented here is to show you one way of reading/writing -- software accessible registers implemented in the user logic slave model. -- Each bit of the Bus2IP_WrCE/Bus2IP_RdCE signals is configured to correspond -- to one software accessible register by the top level template. For example, -- if you have four 32 bit software accessible registers in the user logic, -- you are basically operating on the following memory mapped registers: -- -- Bus2IP_WrCE/Bus2IP_RdCE Memory Mapped Register -- "1000" C_BASEADDR + 0x0 -- "0100" C_BASEADDR + 0x4 -- "0010" C_BASEADDR + 0x8 -- "0001" C_BASEADDR + 0xC -- ------------------------------------------ slv_reg_write_sel <= Bus2IP_WrCE(0 to 0); slv_reg_read_sel <= Bus2IP_RdCE(0 to 0); slv_write_ack <= Bus2IP_WrCE(0); slv_read_ack <= Bus2IP_RdCE(0); -- implement slave model software accessible register(s) SLAVE_REG_WRITE_PROC : process( Bus2IP_Clk ) is begin if Bus2IP_Clk'event and Bus2IP_Clk = '1' then if Bus2IP_Reset = '1' then slv_reg0 <= (others => '0'); elsif load_flags = '1' then slv_reg0 <= slv_reg0(0 to 15) & core_flags; else case slv_reg_write_sel is when "1" => for byte_index in 0 to (C_SLV_DWIDTH/8)-1 loop if ( Bus2IP_BE(byte_index) = '1' ) then slv_reg0(byte_index*8 to byte_index*8+7) <= Bus2IP_Data(byte_index*8 to byte_index*8+7); end if; end loop; when others => null; end case; end if; end if; end process SLAVE_REG_WRITE_PROC; -- implement slave model software accessible register(s) read mux SLAVE_REG_READ_PROC : process( slv_reg_read_sel, slv_reg0 ) is begin case slv_reg_read_sel is when "1" => slv_ip2bus_data <= slv_reg0; when others => slv_ip2bus_data <= (others => '0'); end case; end process SLAVE_REG_READ_PROC; ------------------------------------------ -- Multiplier core interrupts form IP core interrupt ------------------------------------------ core_interrupt(0) <= core_ready or core_mem_collision or core_fifo_full or core_fifo_nopush; IP2Bus_IntrEvent <= core_interrupt; FLAGS_CNTRL_PROC: process(Bus2IP_Clk, Bus2IP_Reset) is begin if Bus2IP_Reset = '1' then core_flags <= (others => '0'); load_flags <= '0'; elsif rising_edge(Bus2IP_Clk) then if core_start = '1' then core_flags <= (others => '0'); else if core_ready = '1' then core_flags(15) <= '1'; else core_flags(15) <= core_flags(15); end if; if core_mem_collision = '1' then core_flags(14) <= '1'; else core_flags(14) <= core_flags(14); end if; if core_fifo_full = '1' then core_flags(13) <= '1'; else core_flags(13) <= core_flags(13); end if; if core_fifo_nopush = '1' then core_flags(12) <= '1'; else core_flags(12) <= core_flags(12); end if; end if; -- load_flags <= core_interrupt(0); end if; end process FLAGS_CNTRL_PROC; ------------------------------------------ -- Example code to access user logic memory region -- -- Note: -- The example code presented here is to show you one way of using -- the user logic memory space features. The Bus2IP_Addr, Bus2IP_CS, -- and Bus2IP_RNW IPIC signals are dedicated to these user logic -- memory spaces. Each user logic memory space has its own address -- range and is allocated one bit on the Bus2IP_CS signal to indicated -- selection of that memory space. Typically these user logic memory -- spaces are used to implement memory controller type cores, but it -- can also be used in cores that need to access additional address space -- (non C_BASEADDR based), s.t. bridges. This code snippet infers -- 6 256x32-bit (byte accessible) single-port Block RAM by XST. ------------------------------------------ mem_select <= Bus2IP_CS; mem_read_enable <= ( Bus2IP_CS(0) or Bus2IP_CS(1) or Bus2IP_CS(2) or Bus2IP_CS(3) or Bus2IP_CS(4) or Bus2IP_CS(5) ) and Bus2IP_RNW; mem_read_ack <= mem_read_ack_dly1; mem_write_ack <= ( Bus2IP_CS(0) or Bus2IP_CS(1) or Bus2IP_CS(2) or Bus2IP_CS(3) or Bus2IP_CS(4) or Bus2IP_CS(5) ) and not(Bus2IP_RNW); mem_address <= Bus2IP_Addr(C_SLV_AWIDTH-8 to C_SLV_AWIDTH-3); -- implement single clock wide read request mem_read_req <= mem_read_enable and not(mem_read_enable_dly1); BRAM_RD_REQ_PROC : process( Bus2IP_Clk ) is begin if ( Bus2IP_Clk'event and Bus2IP_Clk = '1' ) then if ( Bus2IP_Reset = '1' ) then mem_read_enable_dly1 <= '0'; else mem_read_enable_dly1 <= mem_read_enable; end if; end if; end process BRAM_RD_REQ_PROC; -- this process generates the read acknowledge 1 clock after read enable -- is presented to the BRAM block. The BRAM block has a 1 clock delay -- from read enable to data out. BRAM_RD_ACK_PROC : process( Bus2IP_Clk ) is begin if ( Bus2IP_Clk'event and Bus2IP_Clk = '1' ) then if ( Bus2IP_Reset = '1' ) then mem_read_ack_dly1 <= '0'; else mem_read_ack_dly1 <= mem_read_req; end if; end if; end process BRAM_RD_ACK_PROC; -- address logic Sel_MNO <= mem_select(0); with mem_select(1 to 4) select Sel_Op <= "00" when "1000", "01" when "0100", "10" when "0010", "11" when others; core_rw_address <= Sel_MNO & Sel_Op & mem_address; -- data-in core_data_in <= Bus2IP_Data; core_fifo_din <= Bus2IP_Data; core_write_enable <= (Bus2IP_CS(0) or Bus2IP_CS(1) or Bus2IP_CS(2) or Bus2IP_CS(3) or Bus2IP_CS(4)) and (not Bus2IP_RNW); core_fifo_push <= Bus2IP_CS(5) and (not Bus2IP_RNW); -- no read mux required, we can only read from core_data_out mem_ip2bus_data <= core_data_out; ------------------------------------------ -- Map slv_reg0 bits to core control signals ------------------------------------------ core_start <= slv_reg0(8); core_run_auto <= slv_reg0(9); core_p_sel <= slv_reg0(0 to 1); core_dest_op_single <= slv_reg0(2 to 3); core_x_sel_single <= slv_reg0(4 to 5); core_y_sel_single <= slv_reg0(6 to 7); ------------------------------------------ -- Multiplier core instance ------------------------------------------ the_multiplier: multiplier_core port map( clk => Bus2IP_Clk, -- v reset => Bus2IP_Reset, -- v -- operand memory interface (plb shared memory) write_enable => core_write_enable, data_in => core_data_in, rw_address => core_rw_address, data_out => core_data_out, collision => core_mem_collision, -- v -- op_sel fifo interface fifo_din => core_fifo_din, fifo_push => core_fifo_push, fifo_full => core_fifo_full, -- v fifo_nopush => core_fifo_nopush, -- v -- ctrl signals start => core_start, -- v run_auto => core_run_auto, -- v ready => core_ready, -- v x_sel_single => core_x_sel_single, -- v y_sel_single => core_y_sel_single, -- v dest_op_single => core_dest_op_single, -- v p_sel => core_p_sel, -- v calc_time => calc_time -- v ); ------------------------------------------ -- Drive IP to Bus signals ------------------------------------------ IP2Bus_Data <= slv_ip2bus_data when slv_read_ack = '1' else mem_ip2bus_data when mem_read_ack = '1' else (others => '0'); IP2Bus_WrAck <= slv_write_ack or mem_write_ack; IP2Bus_RdAck <= slv_read_ack or mem_read_ack; IP2Bus_Error <= '0'; end IMP;
Go to most recent revision | Compare with Previous | Blame | View Log