OpenCores
URL https://opencores.org/ocsvn/modular_oscilloscope/modular_oscilloscope/trunk

Subversion Repositories modular_oscilloscope

[/] [modular_oscilloscope/] [trunk/] [hdl/] [ctrl/] [memory_writer.vhd] - Rev 42

Go to most recent revision | Compare with Previous | Blame | View Log

-------------------------------------------------------------------------------------------------100
--| Modular Oscilloscope
--| UNSL - Argentine
--|
--| File: ctrl_memory_writer.vhd
--| Version: 0.1
--| Tested in: Actel A3PE1500
--|-------------------------------------------------------------------------------------------------
--| Description:
--|   CONTROL - Memory writer
--|   Read data and write it in a memory (it's a simple wishbone bridge)
--|   
--|-------------------------------------------------------------------------------------------------
--| File history:
--|   0.1   | jul-2009 | First release
----------------------------------------------------------------------------------------------------
--| Copyright © 2009, Facundo Aguilera.
--|
--| This VHDL design file is an open design; you can redistribute it and/or
--| modify it and/or implement it after contacting the author.
----------------------------------------------------------------------------------------------------
 
 
--==================================================================================================
-- TODO
-- · ...
--==================================================================================================
 
 
library ieee;
use ieee.std_logic_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.NUMERIC_STD.ALL;
 
 
 
----------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------
entity ctrl_memory_writer is
  generic(
    MEM_ADD_WIDTH: integer :=  14
  );
  port(
    ------------------------------------------------------------------------------------------------
    -- to memory
    DAT_O_mem: out std_logic_vector (15 downto 0);
    ADR_O_mem: out std_logic_vector (MEM_ADD_WIDTH - 1  downto 0);   
    CYC_O_mem: out std_logic;  
    STB_O_mem: out std_logic;  
    ACK_I_mem: in std_logic ;
    WE_O_mem:  out std_logic;
 
    ------------------------------------------------------------------------------------------------
    -- to acquistion module
    DAT_I_adc: in std_logic_vector (15 downto 0);
    -- Using an address generator, commented
    -- ADR_O_adc: out std_logic_vector (ADC_ADD_WIDTH - 1  downto 0); 
    CYC_O_adc: out std_logic;  
    STB_O_adc: out std_logic;  
    ACK_I_adc: in std_logic ;
    WE_O_adc:  out std_logic;
 
    ------------------------------------------------------------------------------------------------
    -- Common signals 
    RST_I: in std_logic;  
    CLK_I: in std_logic;  
 
    ------------------------------------------------------------------------------------------------
    -- Internal
    -- reset memory address to 0
    reset_I:            in std_logic;                     
    -- read in clk edge from the actual address ('0' means pause, '1' means continue)
    enable_I:           in std_logic;                     
    final_address_I:    in std_logic_vector (MEM_ADD_WIDTH - 1 downto 0);
    -- it is set when communication ends and remains until next restart or actual address change
    finished_O:         out std_logic;
    -- when counter finishes, restart
    continuous_I:       in  std_logic;
  );
end entity ctrl_memory_writer;
 
 
----------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------
architecture ARCH11 of ctrl_output_manager is
 
  type DataStatusType is (
          INIT,
          WORKING
          );
 
  signal data_status: DataStatusType; -- comunicates status between both ports
 
 
  signal count: std_logic_vector(MEM_ADD_WIDTH-1  downto 0);
  signal enable_count:std_logic;
  signal reset_count: std_logic;
  signal data: std_logic_vector(15 downto 0);
 
  signal address_counter: std_logic_vector(MEM_ADD_WIDTH - 1  downto 0);
  signal s_finished, s_STB_adc, s_STB_mem: std_logic; -- previous to outputs
 
begin 
  --------------------------------------------------------------------------------------------------
  -- Instances
  U_COUNTER0: generic_counter
  generic map(
    OUTPUT_WIDTH => MEM_ADD_WIDTH -- Output width for counter.
  )
  port map(  
    clk_I => CLK_I, 
    count_O => count, 
    reset_I => reset_count,
    enable_I => enable_count
  );
 
 
  --------------------------------------------------------------------------------------------------
  -- Combinational
 
  -- counter
  s_finished <= '1' when count >= final_address_I;
  enable_count <= '1' when enable_I = '1' and 
                           data_status = WORKING  and 
                           s_STB_mem = '1' and 
                           ACK_I_mem = '1' and
                           s_finished = '0'
                      else
                  '0';
  reset_count <= '1' when reset_I = '1' or (s_finished = '1' and continuous_I = '1') else
                 '0';
 
  -- outputs
  finished_O <= s_finished;
  STB_O_adc <= s_STB_adc; 
  STB_O_mem <= s_STB_mem;
  DAT_O_mem <= data;
  ADR_O_mem <= count;
 
  --------------------------------------------------------------------------------------------------
  -- Clocked
 
 
  -- Lock interface when working
  P_cyc_signals: process (clk_I, enable_count, ACK_I_adc, ACK_I_mem)
  begin
    if CLK_I'event and CLK_I = '1' then
      if enable_I = '0' or reset_I = '1' then
        CYC_O_adc <= '0';   CYC_O_mem <= '0';
      else
        CYC_O_adc <= '1';  CYC_O_mem <= '1';
      end if;
    end if;  
  end process;
 
 
 
 
  P_stb_signals: process (CLK_I, reset_I, data_status, s_STB_adc, s_STB_mem, ACK_I_adc, ACK_I_mem)
  begin
 
    if CLK_I'event and CLK_I = '1' then
      if reset_I = '1' then
        data_status <= INIT;
        s_STB_adc <= '0';
        s_STB_mem <= '0';
        data <= (others => '0');
      elsif enable_I = '1' then
        if data_status = INIT and s_STB_adc = '0' or s_STB_mem = '0' then 
          -- this state is only necessary when there are adc convertions in every clock
          -- (for the first convertion)
          s_STB_adc <= '1';
          s_STB_mem <= '1';
        else 
          data_status <= WORKING;
 
          if s_STB_adc = '1' and ACK_I_adc = '1' then
            s_STB_mem <= '1'; -- strobe when adc ack
            data <= DAT_I_adc; -- save data
          elsif s_STB_mem = '1' and ACK_I_mem = '1' then
            s_STB_mem <= '0';        
          end if;
 
          if s_STB_mem = '1' and ACK_I_mem = '1' then
            s_STB_adc <= '1'; -- strobe when mem ack
          elsif s_STB_adc = '1' and ACK_I_adc = '1' then
            s_STB_adc <= '0';
          end if;
 
        end if;
      else
        s_STB_adc <= '0';
        s_STB_mem <= '0';
      end if;
    end if;  
 
  end process;
 
 
end architecture;

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.