URL
https://opencores.org/ocsvn/mpeg2fpga/mpeg2fpga/trunk
Subversion Repositories mpeg2fpga
[/] [mpeg2fpga/] [trunk/] [tools/] [ieee1180/] [ieee1180/] [idct.v] - Rev 2
Compare with Previous | Blame | View Log
/* * Inverse Discrete Cosine Transform. * * Copyright Koen De Vleeschauwer, 2006. All rights reserved. * Sat Jul 22 17:27:43 CEST 2006 * */ `include "timescale.v" `undef DEBUG //`define DEBUG 1 //`define DEBUG_IDCT_1D 1 //`define DEBUG_TRANSPOSE 1 /* * 2-dimensional inverse discrete cosine transform. * * Uses row/column decomposition method: * 1. do a one-dimensional idct om the rows * 2. swap rows and columns, * 3. do a one-dimensional idct om the columns * 4. swap rows and columns to go back to row order. * * Thought to meet or exceed the former IEEE 1180-1990 standard. * Can do streaming. * Uses 12 multipliers, all smaller than 18x18, and 2 dual-ported rams. * * The 8-point 1-dimensional inverse discrete cosine transform can be written as: * * | y0 | 1 | a b a c | | x0 | 1 | d e f g | | x1 | * | y1 | = - * | a c -a -b | * | x2 | + - * | e -g -d -f | * | x3 | * | y2 | 2 | a -c -a b | | x4 | 2 | f -d g e | | x5 | * | y3 | | a -b a c | | x6 | | g -f e -d | | x7 | * * | y7 | 1 | a b a c | | x0 | 1 | d e f g | | x1 | * | y6 | = - * | a c -a -b | * | x2 | - - * | e -g -d -f | * | x3 | * | y5 | 2 | a -c -a b | | x4 | 2 | f -d g e | | x5 | * | y4 | | a -b a c | | x6 | | g -f e -d | | x7 | * * where * a = cos (pi/4) * b = cos (pi/8) * c = sin (pi/8) * d = cos (pi/16) * e = cos (3*pi/16) * f = sin (3*pi/16) * g = sin (pi/16) * * For fixed-point calculations, a..g are multiplied by sqrt(8) * 2**scale * where scale = 13 or 14, depending upon accuracy desired. * Multiplying by sqrt(8) causes a to be a power of two. * This way a*x0 and a*x4 can be calculated using shifts, saving two multipliers. * * There's a Call For Proposals for a Fixed-Point 8x8 IDCT within MPEG. * This implementation follows one of the proposals: * "Systematic approach of Fixed Point 8x8 IDCT and DCT Design and Implementation", * Zhang, Wang, Yu. * * We choose: * scheme = 4 * scale = 14 * row_shift = 10 * col_shift = 21 * * Calculation of theoretical register sizes: * sample = 8 (in mpeg2 video) * input of idct_row: * input_bits = sample_bits + 4 = 8 + 4 = 12 (Form. 6) * outout of idct_row: * output_bits_row = scale - row_shift + sample_bits + 5 = 14 - 10 + 8 + 5 = 17 (Form. 11) * size of internal registers during calculation of idct_row: * max_inter_bits_row = scale + sample_bits + 5 = 13 + 8 + 5 = 26 * output of idct_col: * output_bits_col = sample_bits + 3 = 8 + 3 = 11 (Form. 12) * size of internal registers during calculation of idct_col: * max_inter_bits_col = col_shift + sample_bits + 3 = 21 + 8 + 3 = 32 (Form. 13) * * We choose: * register for idct_row: 32 bits * output of idct_row: 22 bits * registers for idct_col: 42 bits * output of idct_col: 22 bits * */ module idct(clk, clk_en, rst, iquant_level, iquant_eob, iquant_valid, idct_data, idct_valid, idct_eob); input clk; // clock input clk_en; // clock enable input rst; // synchronous active low reset input signed [11:0]iquant_level; // inverse quantized dct coefficient input iquant_eob; // asserted at last inverse quantized dct coefficient of block input iquant_valid; // asserted when inverse quantized dct coefficient valid output signed [8:0]idct_data; // inverse quantized dct coefficient output idct_eob; // asserted at last inverse quantized dct coefficient of block output idct_valid; // asserted when idct_data, idct_eob valid wire signed [21:0]idct_row_data; wire idct_row_valid; wire signed [21:0]idct_col_data_in; wire idct_col_valid_in; wire signed [20:0]idct_col_data_out; wire idct_col_valid_out; wire signed [8:0]idct_col_clip_data_out; wire idct_col_clip_valid_out; /* apply 1-d idct to rows */ idct1d_row #(.scale(14), .dta_in_width(12), .dta_shift(10), .reg_width(32)) idct_row(.clk(clk), .clk_en(clk_en), .rst(rst), .dta_in(iquant_level), .dta_in_valid(iquant_valid), .dta_out(idct_row_data), .dta_out_valid(idct_row_valid)); /* * Result from idct_row is 22 bit wide. */ /* swap rows and columns */ transpose #(.dta_width(22)) row2col(.clk(clk), .clk_en(clk_en), .rst(rst), .dta_in(idct_row_data), .dta_in_valid(idct_row_valid), .dta_out(idct_col_data_in), .dta_out_valid(idct_col_valid_in)); /* apply 1-d idct to columns */ idct1d_col #(.scale(14), .dta_in_width(22), .dta_shift(21), .reg_width(42)) idct_col(.clk(clk), .clk_en(clk_en), .rst(rst), .dta_in(idct_col_data_in), .dta_in_valid(idct_col_valid_in), .dta_out(idct_col_data_out), .dta_out_valid(idct_col_valid_out)); /* * Result from idct_col is 22 bits, * Clip to 9 bits. */ clip_col clip_col(.clk(clk), .clk_en(clk_en), .rst(rst), .dta_in(idct_col_data_out), .dta_in_valid(idct_col_valid_out), .dta_out(idct_col_clip_data_out), .dta_out_valid(idct_col_clip_valid_out)); /* swap back to rows */ transpose #(.dta_width(9)) col2row(.clk(clk), .clk_en(clk_en), .rst(rst), .dta_in(idct_col_clip_data_out), .dta_in_valid(idct_col_clip_valid_out), .dta_out(idct_data), .dta_out_valid(idct_valid), .dta_out_eob(idct_eob)); `ifdef DEBUG always @(posedge clk) if (clk_en && iquant_valid) begin if (iquant_eob) begin #0 $display("%m\t\tidct input: %d (eob)", iquant_level); end else begin #0 $display("%m\t\tidct input: %d", iquant_level); end end always @(posedge clk) if (clk_en && idct_row_valid) begin #0 $display("%m\t\tafter idct_row: %d", idct_row_data); end always @(posedge clk) if (clk_en && idct_col_valid_in) begin #0 $display("%m\t\tafter row2col: %d", idct_col_data_in); end always @(posedge clk) if (clk_en && idct_col_valid_out) begin #0 $display("%m\t\tafter idct_col: %d", idct_col_data_out); end always @(posedge clk) if (clk_en && idct_col_clip_valid_out) begin #0 $display("%m\t\tafter clipping: %d", idct_col_clip_data_out); end always @(posedge clk) if (clk_en && idct_valid) begin #0 $display("%m\t\tafter col2row: %d", idct_data); end `endif endmodule /* * 8-point 1-dimensional inverse discrete cosine transform. Row transform. */ module idct1d_row (clk, clk_en, rst, dta_in, dta_in_valid, dta_out, dta_out_valid); parameter dta_in_width=12, // width of dta_in dta_shift=11, // how much to shift result to the right reg_width=29, // width of internal registers scale=13, // cosine values scaled by 2**scale dta_out_width=reg_width-dta_shift, // width of dta_out cosval_width=16, // width of COSVAL_A .. COSVAL_G prod_width=dta_in_width+cosval_width; // width of COSVAL_i * xi input clk; // clock input clk_en; // clock enable input rst; // synchronous active low reset input signed [dta_in_width-1:0]dta_in; // data in input dta_in_valid; output reg signed [dta_out_width-1:0]dta_out; // data out - 18 bits wide output reg dta_out_valid; parameter [cosval_width-1:0] COSVAL_A = 16'sd16384, /* SQRT(8)/2 * 2**14 * cos (pi/4) */ COSVAL_MINUSA = -16'sd16384, /* - SQRT(8)/2 * 2**14 * cos (pi/4) */ COSVAL_B = 16'sd21407, /* SQRT(8)/2 * 2**14 * cos (pi/8) */ COSVAL_MINUSB = -16'sd21407, /* - SQRT(8)/2 * 2**14 * cos (pi/8) */ COSVAL_C = 16'sd8867, /* SQRT(8)/2 * 2**14 * sin (pi/8) */ COSVAL_MINUSC = -16'sd8867, /* - SQRT(8)/2 * 2**14 * sin (pi/8) */ COSVAL_D = 16'sd22725, /* SQRT(8)/2 * 2**14 * cos (pi/16) */ COSVAL_MINUSD = -16'sd22725, /* - SQRT(8)/2 * 2**14 * cos (pi/16) */ COSVAL_E = 16'sd19266, /* SQRT(8)/2 * 2**14 * cos (3*pi/16) */ COSVAL_MINUSE = -16'sd19266, /* - SQRT(8)/2 * 2**14 * cos (3*pi/16) */ COSVAL_F = 16'sd12873, /* SQRT(8)/2 * 2**14 * sin (3*pi/16) */ COSVAL_MINUSF = -16'sd12873, /* - SQRT(8)/2 * 2**14 * sin (3*pi/16) */ COSVAL_G = 16'sd4520, /* SQRT(8)/2 * 2**14 * sin (pi/16) */ COSVAL_MINUSG = -16'sd4520; /* - SQRT(8)/2 * 2**14 * sin (pi/16) */ /* dct coefficients input */ reg signed [dta_in_width-1:0]q0; reg signed [dta_in_width-1:0]q1; reg signed [dta_in_width-1:0]q2; reg signed [dta_in_width-1:0]q3; reg signed [dta_in_width-1:0]q4; reg signed [dta_in_width-1:0]q5; reg signed [dta_in_width-1:0]q6; reg signed [dta_in_width-1:0]q7; reg signed [dta_in_width-1:0]x0; reg signed [dta_in_width-1:0]x1; reg signed [dta_in_width-1:0]x2; reg signed [dta_in_width-1:0]x3; reg signed [dta_in_width-1:0]x4; reg signed [dta_in_width:0]minus_x4; // needs one bit more than x4, else two's complement of most negative x4 doesn't fit. reg signed [dta_in_width-1:0]x5; reg signed [dta_in_width-1:0]x6; reg signed [dta_in_width-1:0]x7; reg signed [cosval_width-1:0]cos1; reg signed [cosval_width-1:0]cos2; reg signed [cosval_width-1:0]cos3; reg signed [cosval_width-1:0]cos5; reg signed [cosval_width-1:0]cos6; reg signed [cosval_width-1:0]cos7; reg signed [prod_width-1:0]prod0; // product of xi * cosvali reg signed [prod_width-1:0]prod1; reg signed [prod_width-1:0]prod2; reg signed [prod_width-1:0]prod3; reg signed [prod_width-1:0]prod4; reg signed [prod_width-1:0]prod5; reg signed [prod_width-1:0]prod6; reg signed [prod_width-1:0]prod7; reg signed [reg_width-1:0]sum02; // sum of prodi and prodj reg signed [reg_width-1:0]sum46; reg signed [reg_width-1:0]sum13; reg signed [reg_width-1:0]sum57; reg signed [reg_width-1:0]sum0246; // sum of sumij and sumpq reg signed [reg_width-1:0]sum1357; reg signed [reg_width-1:0]y; // y sum or difference of sum0246 and sum0246 reg [3:0]dta_in_cntr; reg dta_out_val_0; reg dta_out_val_1; reg dta_out_val_2; reg dta_out_val_3; reg add_0; reg add_1; reg add_2; // an offset which is added to x0 to round the results. parameter signed [reg_width-1:0] offset = {2'b01, {(dta_shift-1){1'b0}}}; parameter [3:0] STATE_IDLE = 4'd0, STATE_0 = 4'd1, STATE_1 = 4'd2, STATE_2 = 4'd3, STATE_3 = 4'd4, STATE_4 = 4'd5, STATE_5 = 4'd6, STATE_6 = 4'd7, STATE_7 = 4'd8; reg [3:0]state; reg [3:0]next; /* * IDCT data input */ /* input shift register */ always @(posedge clk) if (~rst) begin q0 <= 'sd0; q1 <= 'sd0; q2 <= 'sd0; q3 <= 'sd0; q4 <= 'sd0; q5 <= 'sd0; q6 <= 'sd0; q7 <= 'sd0; end else if (clk_en && dta_in_valid) begin q0 <= q1; q1 <= q2; q2 <= q3; q3 <= q4; q4 <= q5; q5 <= q6; q6 <= q7; q7 <= dta_in; end else begin q0 <= q0; q1 <= q1; q2 <= q2; q3 <= q3; q4 <= q4; q5 <= q5; q6 <= q6; q7 <= q7; end always @(posedge clk) if (~rst) begin x0 <= 'sd0; x1 <= 'sd0; x2 <= 'sd0; x3 <= 'sd0; x4 <= 'sd0; minus_x4 <= 'sd0; x5 <= 'sd0; x6 <= 'sd0; x7 <= 'sd0; end else if (clk_en && (dta_in_cntr == 4'd8)) begin x0 <= q0; x1 <= q1; x2 <= q2; x3 <= q3; x4 <= q4; minus_x4 <= ~{q4[dta_in_width-1], q4}+1'b1; x5 <= q5; x6 <= q6; x7 <= q7; end else begin x0 <= x0; x1 <= x1; x2 <= x2; x3 <= x3; x4 <= x4; minus_x4 <= minus_x4; x5 <= x5; x6 <= x6; x7 <= x7; end /* input counter */ always @(posedge clk) if (~rst) dta_in_cntr <= 4'b0; else if (clk_en && (dta_in_cntr == 4'd8) && dta_in_valid) dta_in_cntr <= 3'd1; else if (clk_en && (dta_in_cntr == 4'd8)) dta_in_cntr <= 3'd0; else if (clk_en && dta_in_valid) dta_in_cntr <= dta_in_cntr + 3'd1; else dta_in_cntr <= dta_in_cntr; /* * IDCT calculation */ /* next state logic */ always @* case (state) STATE_IDLE: if (dta_in_cntr == 4'd8) next = STATE_0; else next = STATE_IDLE; STATE_0: next = STATE_1; STATE_1: next = STATE_2; STATE_2: next = STATE_3; STATE_3: next = STATE_4; STATE_4: next = STATE_5; STATE_5: next = STATE_6; STATE_6: next = STATE_7; STATE_7: if (dta_in_cntr == 4'd8) next = STATE_0; else next = STATE_IDLE; default next = STATE_IDLE; endcase /* state */ always @(posedge clk) if(~rst) state <= STATE_IDLE; else if (clk_en) state <= next; else state <= state; always @(posedge clk) if (~rst) cos2 <= COSVAL_B; else if (clk_en) case (state) STATE_0: cos2 <= COSVAL_C; STATE_1: cos2 <= COSVAL_MINUSC; STATE_2: cos2 <= COSVAL_MINUSB; STATE_3: cos2 <= COSVAL_MINUSB; STATE_4: cos2 <= COSVAL_MINUSC; STATE_5: cos2 <= COSVAL_C; STATE_6: cos2 <= COSVAL_B; STATE_7: cos2 <= COSVAL_B; default cos2 <= COSVAL_B; endcase else cos2 <= cos2; always @(posedge clk) if (~rst) cos6 <= COSVAL_C; else if (clk_en) case (state) STATE_0: cos6 <= COSVAL_MINUSB; STATE_1: cos6 <= COSVAL_B; STATE_2: cos6 <= COSVAL_MINUSC; STATE_3: cos6 <= COSVAL_MINUSC; STATE_4: cos6 <= COSVAL_B; STATE_5: cos6 <= COSVAL_MINUSB; STATE_6: cos6 <= COSVAL_C; STATE_7: cos6 <= COSVAL_C; default cos6 <= COSVAL_C; endcase else cos6 <= cos6; always @(posedge clk) if (~rst) cos1 <= COSVAL_D; else if (clk_en) case (state) STATE_0: cos1 <= COSVAL_E; STATE_1: cos1 <= COSVAL_F; STATE_2: cos1 <= COSVAL_G; STATE_3: cos1 <= COSVAL_G; STATE_4: cos1 <= COSVAL_F; STATE_5: cos1 <= COSVAL_E; STATE_6: cos1 <= COSVAL_D; STATE_7: cos1 <= COSVAL_D; default cos1 <= COSVAL_D; endcase else cos1 <= cos1; always @(posedge clk) if (~rst) cos3 <= COSVAL_E; else if (clk_en) case (state) STATE_0: cos3 <= COSVAL_MINUSG; STATE_1: cos3 <= COSVAL_MINUSD; STATE_2: cos3 <= COSVAL_MINUSF; STATE_3: cos3 <= COSVAL_MINUSF; STATE_4: cos3 <= COSVAL_MINUSD; STATE_5: cos3 <= COSVAL_MINUSG; STATE_6: cos3 <= COSVAL_E; STATE_7: cos3 <= COSVAL_E; default cos3 <= COSVAL_E; endcase else cos3 <= cos3; always @(posedge clk) if (~rst) cos5 <= COSVAL_F; else if (clk_en) case (state) STATE_0: cos5 <= COSVAL_MINUSD; STATE_1: cos5 <= COSVAL_G; STATE_2: cos5 <= COSVAL_E; STATE_3: cos5 <= COSVAL_E; STATE_4: cos5 <= COSVAL_G; STATE_5: cos5 <= COSVAL_MINUSD; STATE_6: cos5 <= COSVAL_F; STATE_7: cos5 <= COSVAL_F; default cos5 <= COSVAL_F; endcase else cos5 <= cos5; always @(posedge clk) if (~rst) cos7 <= COSVAL_G; else if (clk_en) case (state) STATE_0: cos7 <= COSVAL_MINUSF; STATE_1: cos7 <= COSVAL_E; STATE_2: cos7 <= COSVAL_MINUSD; STATE_3: cos7 <= COSVAL_MINUSD; STATE_4: cos7 <= COSVAL_E; STATE_5: cos7 <= COSVAL_MINUSF; STATE_6: cos7 <= COSVAL_G; STATE_7: cos7 <= COSVAL_G; default cos7 <= COSVAL_G; endcase else cos7 <= cos7; always @(posedge clk) if (~rst) begin prod0 <= 'sd0; prod1 <= 'sd0; prod2 <= 'sd0; prod3 <= 'sd0; prod4 <= 'sd0; prod5 <= 'sd0; prod6 <= 'sd0; prod7 <= 'sd0; sum02 <= 'sd0; sum46 <= 'sd0; sum13 <= 'sd0; sum57 <= 'sd0; sum0246 <= 'sd0; sum1357 <= 'sd0; end else if (clk_en) begin /* * Next line implements * prod0 <= (cos0 * x0) + offset; // = cos0 * x0 + offset; * using shifts; offset added for proper rounding. */ prod0 <= {{(reg_width - dta_in_width){x0[dta_in_width-1]}}, x0, {scale{1'b0}}} + offset; // = cos0 * x0 + offset; offset added for proper rounding. Avoids a multipier. /* * These ought to map to a hardware multiplier in the fpga. */ prod1 <= cos1 * x1; prod2 <= cos2 * x2; prod3 <= cos3 * x3; /* * case implements * prod4 <= cos4 * x4; * using shifts, saving a multiplier. */ case (state) STATE_0, STATE_3, STATE_4, STATE_7: prod4 <= {{(reg_width - dta_in_width){x4[dta_in_width-1]}}, x4, {scale{1'b0}}}; STATE_1, STATE_2, STATE_5, STATE_6: prod4 <= {{(reg_width - dta_in_width-1){minus_x4[dta_in_width]}}, minus_x4, {scale{1'b0}}}; default prod4 <= {{(reg_width - dta_in_width){x4[dta_in_width-1]}}, x4, {scale{1'b0}}}; endcase prod5 <= cos5 * x5; prod6 <= cos6 * x6; prod7 <= cos7 * x7; sum02 <= {{(reg_width-prod_width){prod0[prod_width-1]}}, prod0} + {{(reg_width-prod_width){prod2[prod_width-1]}}, prod2}; sum46 <= {{(reg_width-prod_width){prod4[prod_width-1]}}, prod4} + {{(reg_width-prod_width){prod6[prod_width-1]}}, prod6}; sum13 <= {{(reg_width-prod_width){prod1[prod_width-1]}}, prod1} + {{(reg_width-prod_width){prod3[prod_width-1]}}, prod3}; sum57 <= {{(reg_width-prod_width){prod5[prod_width-1]}}, prod5} + {{(reg_width-prod_width){prod7[prod_width-1]}}, prod7}; sum0246 <= sum02 + sum46; sum1357 <= sum13 + sum57; end else begin prod0 <= prod0; prod1 <= prod1; prod2 <= prod2; prod3 <= prod3; prod4 <= prod4; prod5 <= prod5; prod6 <= prod6; prod7 <= prod7; sum02 <= sum02; sum46 <= sum46; sum13 <= sum13; sum57 <= sum57; sum0246 <= sum0246; sum1357 <= sum1357; end always @(posedge clk) if (~rst) begin dta_out_val_0 <= 1'b0; dta_out_val_1 <= 1'b0; dta_out_val_2 <= 1'b0; dta_out_val_3 <= 1'b0; dta_out_valid <= 1'b0; end else if (clk_en) begin dta_out_val_0 <= (state != STATE_IDLE); dta_out_val_1 <= dta_out_val_0; dta_out_val_2 <= dta_out_val_1; dta_out_val_3 <= dta_out_val_2; dta_out_valid <= dta_out_val_3; end else begin dta_out_val_0 <= dta_out_val_0; dta_out_val_1 <= dta_out_val_1; dta_out_val_2 <= dta_out_val_2; dta_out_val_3 <= dta_out_val_3; dta_out_valid <= dta_out_valid; end /* * Looking at the equation for the 1d idct, the final step when calculating * y0..y3 is addition, when calculating y4..y7 subtraction. * register add_0 is 1 when one needs to add, 0 when one needs to subtract. */ always @(posedge clk) if (~rst) add_0 <= 1'd0; else if (clk_en) case (state) STATE_0, STATE_1, STATE_2, STATE_3: add_0 <= 1'b1; STATE_4, STATE_6, STATE_5, STATE_7: add_0 <= 1'b0; default add_0 <= 1'b0; endcase else add_0 <= add_0; always @(posedge clk) if (~rst) begin add_1 <= 1'b0; add_2 <= 1'b0; end else if (clk_en) begin add_1 <= add_0; add_2 <= add_1; end else begin add_1 <= add_1; add_2 <= add_2; end always @(posedge clk) if (~rst) y <= 'sd0; else if (clk_en && add_2) y <= sum0246 + sum1357; else if (clk_en) y <= sum0246 - sum1357; else y <= y; always @(posedge clk) if (~rst) dta_out <= 'sd0; else if (clk_en) dta_out <= y >>> dta_shift; else dta_out <= dta_out; `ifdef DEBUG_IDCT_1D always @(posedge clk) begin $strobe("%m\toffset: %d", offset); $strobe("%m\tcos0: -------- cos1: %8d cos2: %8d cos3: %8d cos4: -------- cos5: %8d cos6: %8d cos7: %8d", cos1, cos2, cos3, cos5, cos6, cos7); $strobe("%m\t x0: %8d x1: %8d x2: %8d x3: %8d x4: %8d x5: %8d x6: %8d x7: %8d", x0, x1, x2, x3, x4, x5, x6, x7); $strobe("%m\tprod0: %d prod1: %d prod2: %d prod3: %d prod4: %d prod5: %d prod6: %d prod7: %d", prod0, prod1, prod2, prod3, prod4, prod5, prod6, prod7); $strobe("%m\tsum02: %8d sum46: %8d sum13: %8d sum57: %8d", sum02, sum46, sum13, sum57); $strobe("%m\tsum0246: %8d sum1357: %8d", sum0246, sum1357); $strobe("%m\ty: %8d", y); $strobe("%m\tdta_out: %8d", dta_out); end `endif endmodule /* * 8-point 1-dimensional inverse discrete cosine transform. Column transform. * * Mathematically identical to the row transform. * However, the 22x16 multipliers have not been implemented as two 18x18 multipliers, * but as an 18x18 multiplier with a few shifters and adders added. * This saves six multipliers. Clock speed improves, too. */ module idct1d_col (clk, clk_en, rst, dta_in, dta_in_valid, dta_out, dta_out_valid); parameter dta_in_width=12, // width of dta_in dta_shift=11, // how much to shift result to the right reg_width=29, // width of internal registers scale=13, // cosine values scaled by 2**scale dta_out_width=reg_width-dta_shift, // width of dta_out cosval_width=16, // width of COSVAL_A .. COSVAL_G prod_width=dta_in_width+cosval_width; // width of COSVAL_i * xi input clk; // clock input clk_en; // clock enable input rst; // synchronous active low reset input signed [dta_in_width-1:0]dta_in; // data in input dta_in_valid; output reg signed [dta_out_width-1:0]dta_out; // data out - 18 bits wide output reg dta_out_valid; parameter [cosval_width-1:0] COSVAL_A = 16'sd16384, /* SQRT(8)/2 * 2**14 * cos (pi/4) */ COSVAL_MINUSA = -16'sd16384, /* - SQRT(8)/2 * 2**14 * cos (pi/4) */ COSVAL_B = 16'sd21407, /* SQRT(8)/2 * 2**14 * cos (pi/8) */ COSVAL_MINUSB = -16'sd21407, /* - SQRT(8)/2 * 2**14 * cos (pi/8) */ COSVAL_C = 16'sd8867, /* SQRT(8)/2 * 2**14 * sin (pi/8) */ COSVAL_MINUSC = -16'sd8867, /* - SQRT(8)/2 * 2**14 * sin (pi/8) */ COSVAL_D = 16'sd22725, /* SQRT(8)/2 * 2**14 * cos (pi/16) */ COSVAL_MINUSD = -16'sd22725, /* - SQRT(8)/2 * 2**14 * cos (pi/16) */ COSVAL_E = 16'sd19266, /* SQRT(8)/2 * 2**14 * cos (3*pi/16) */ COSVAL_MINUSE = -16'sd19266, /* - SQRT(8)/2 * 2**14 * cos (3*pi/16) */ COSVAL_F = 16'sd12873, /* SQRT(8)/2 * 2**14 * sin (3*pi/16) */ COSVAL_MINUSF = -16'sd12873, /* - SQRT(8)/2 * 2**14 * sin (3*pi/16) */ COSVAL_G = 16'sd4520, /* SQRT(8)/2 * 2**14 * sin (pi/16) */ COSVAL_MINUSG = -16'sd4520; /* - SQRT(8)/2 * 2**14 * sin (pi/16) */ /* dct coefficients input */ reg signed [dta_in_width-1:0]q0; reg signed [dta_in_width-1:0]q1; reg signed [dta_in_width-1:0]q2; reg signed [dta_in_width-1:0]q3; reg signed [dta_in_width-1:0]q4; reg signed [dta_in_width-1:0]q5; reg signed [dta_in_width-1:0]q6; reg signed [dta_in_width-1:0]q7; reg signed [dta_in_width-1:0]x0; reg signed [dta_in_width-1:0]x1; reg signed [dta_in_width-1:0]x2; reg signed [dta_in_width-1:0]x3; reg signed [dta_in_width-1:0]x4; reg signed [dta_in_width:0]minus_x4; // needs one bit more than x4, else two's complement of most negative x4 doesn't fit. reg signed [dta_in_width-1:0]x5; reg signed [dta_in_width-1:0]x6; reg signed [dta_in_width-1:0]x7; reg signed [cosval_width-1:0]cos1; reg signed [cosval_width-1:0]cos2; reg signed [cosval_width-1:0]cos3; reg signed [cosval_width-1:0]cos5; reg signed [cosval_width-1:0]cos6; reg signed [cosval_width-1:0]cos7; reg signed [prod_width-1:0]prod0; // product of xi * cosvali reg signed [prod_width-1:0]prod0_delayed; wire signed [prod_width-1:0]prod1; wire signed [prod_width-1:0]prod2; wire signed [prod_width-1:0]prod3; reg signed [prod_width-1:0]prod4; reg signed [prod_width-1:0]prod4_delayed; wire signed [prod_width-1:0]prod5; wire signed [prod_width-1:0]prod6; wire signed [prod_width-1:0]prod7; reg signed [reg_width-1:0]sum02; // sum of prodi and prodj reg signed [reg_width-1:0]sum46; reg signed [reg_width-1:0]sum13; reg signed [reg_width-1:0]sum57; reg signed [reg_width-1:0]sum0246; // sum of sumij and sumpq reg signed [reg_width-1:0]sum1357; reg signed [reg_width-1:0]y; // y sum or difference of sum0246 and sum0246 reg [3:0]dta_in_cntr; reg dta_out_val_0; reg dta_out_val_1; reg dta_out_val_2; reg dta_out_val_3; reg dta_out_val_4; reg add_0; reg add_1; reg add_2; reg add_3; // an offset which is added to x0 to round the results. parameter signed [reg_width-1:0] offset = {2'b01, {(dta_shift-1){1'b0}}}; parameter [3:0] STATE_IDLE = 4'd0, STATE_0 = 4'd1, STATE_1 = 4'd2, STATE_2 = 4'd3, STATE_3 = 4'd4, STATE_4 = 4'd5, STATE_5 = 4'd6, STATE_6 = 4'd7, STATE_7 = 4'd8; reg [3:0]state; reg [3:0]next; /* * IDCT data input */ /* input shift register */ always @(posedge clk) if (~rst) begin q0 <= 'sd0; q1 <= 'sd0; q2 <= 'sd0; q3 <= 'sd0; q4 <= 'sd0; q5 <= 'sd0; q6 <= 'sd0; q7 <= 'sd0; end else if (clk_en && dta_in_valid) begin q0 <= q1; q1 <= q2; q2 <= q3; q3 <= q4; q4 <= q5; q5 <= q6; q6 <= q7; q7 <= dta_in; end else begin q0 <= q0; q1 <= q1; q2 <= q2; q3 <= q3; q4 <= q4; q5 <= q5; q6 <= q6; q7 <= q7; end always @(posedge clk) if (~rst) begin x0 <= 'sd0; x1 <= 'sd0; x2 <= 'sd0; x3 <= 'sd0; x4 <= 'sd0; minus_x4 <= 'sd0; x5 <= 'sd0; x6 <= 'sd0; x7 <= 'sd0; end else if (clk_en && (dta_in_cntr == 4'd8)) begin x0 <= q0; x1 <= q1; x2 <= q2; x3 <= q3; x4 <= q4; minus_x4 <= ~{q4[dta_in_width-1], q4}+1'b1; x5 <= q5; x6 <= q6; x7 <= q7; end else begin x0 <= x0; x1 <= x1; x2 <= x2; x3 <= x3; x4 <= x4; minus_x4 <= minus_x4; x5 <= x5; x6 <= x6; x7 <= x7; end /* input counter */ always @(posedge clk) if (~rst) dta_in_cntr <= 4'b0; else if (clk_en && (dta_in_cntr == 4'd8) && dta_in_valid) dta_in_cntr <= 3'd1; else if (clk_en && (dta_in_cntr == 4'd8)) dta_in_cntr <= 3'd0; else if (clk_en && dta_in_valid) dta_in_cntr <= dta_in_cntr + 3'd1; else dta_in_cntr <= dta_in_cntr; /* * IDCT calculation */ /* next state logic */ always @* case (state) STATE_IDLE: if (dta_in_cntr == 4'd8) next = STATE_0; else next = STATE_IDLE; STATE_0: next = STATE_1; STATE_1: next = STATE_2; STATE_2: next = STATE_3; STATE_3: next = STATE_4; STATE_4: next = STATE_5; STATE_5: next = STATE_6; STATE_6: next = STATE_7; STATE_7: if (dta_in_cntr == 4'd8) next = STATE_0; else next = STATE_IDLE; default next = STATE_IDLE; endcase /* state */ always @(posedge clk) if(~rst) state <= STATE_IDLE; else if (clk_en) state <= next; else state <= state; always @(posedge clk) if (~rst) cos2 <= COSVAL_B; else if (clk_en) case (state) STATE_0: cos2 <= COSVAL_C; STATE_1: cos2 <= COSVAL_MINUSC; STATE_2: cos2 <= COSVAL_MINUSB; STATE_3: cos2 <= COSVAL_MINUSB; STATE_4: cos2 <= COSVAL_MINUSC; STATE_5: cos2 <= COSVAL_C; STATE_6: cos2 <= COSVAL_B; STATE_7: cos2 <= COSVAL_B; default cos2 <= COSVAL_B; endcase else cos2 <= cos2; always @(posedge clk) if (~rst) cos6 <= COSVAL_C; else if (clk_en) case (state) STATE_0: cos6 <= COSVAL_MINUSB; STATE_1: cos6 <= COSVAL_B; STATE_2: cos6 <= COSVAL_MINUSC; STATE_3: cos6 <= COSVAL_MINUSC; STATE_4: cos6 <= COSVAL_B; STATE_5: cos6 <= COSVAL_MINUSB; STATE_6: cos6 <= COSVAL_C; STATE_7: cos6 <= COSVAL_C; default cos6 <= COSVAL_C; endcase else cos6 <= cos6; always @(posedge clk) if (~rst) cos1 <= COSVAL_D; else if (clk_en) case (state) STATE_0: cos1 <= COSVAL_E; STATE_1: cos1 <= COSVAL_F; STATE_2: cos1 <= COSVAL_G; STATE_3: cos1 <= COSVAL_G; STATE_4: cos1 <= COSVAL_F; STATE_5: cos1 <= COSVAL_E; STATE_6: cos1 <= COSVAL_D; STATE_7: cos1 <= COSVAL_D; default cos1 <= COSVAL_D; endcase else cos1 <= cos1; always @(posedge clk) if (~rst) cos3 <= COSVAL_E; else if (clk_en) case (state) STATE_0: cos3 <= COSVAL_MINUSG; STATE_1: cos3 <= COSVAL_MINUSD; STATE_2: cos3 <= COSVAL_MINUSF; STATE_3: cos3 <= COSVAL_MINUSF; STATE_4: cos3 <= COSVAL_MINUSD; STATE_5: cos3 <= COSVAL_MINUSG; STATE_6: cos3 <= COSVAL_E; STATE_7: cos3 <= COSVAL_E; default cos3 <= COSVAL_E; endcase else cos3 <= cos3; always @(posedge clk) if (~rst) cos5 <= COSVAL_F; else if (clk_en) case (state) STATE_0: cos5 <= COSVAL_MINUSD; STATE_1: cos5 <= COSVAL_G; STATE_2: cos5 <= COSVAL_E; STATE_3: cos5 <= COSVAL_E; STATE_4: cos5 <= COSVAL_G; STATE_5: cos5 <= COSVAL_MINUSD; STATE_6: cos5 <= COSVAL_F; STATE_7: cos5 <= COSVAL_F; default cos5 <= COSVAL_F; endcase else cos5 <= cos5; always @(posedge clk) if (~rst) cos7 <= COSVAL_G; else if (clk_en) case (state) STATE_0: cos7 <= COSVAL_MINUSF; STATE_1: cos7 <= COSVAL_E; STATE_2: cos7 <= COSVAL_MINUSD; STATE_3: cos7 <= COSVAL_MINUSD; STATE_4: cos7 <= COSVAL_E; STATE_5: cos7 <= COSVAL_MINUSF; STATE_6: cos7 <= COSVAL_G; STATE_7: cos7 <= COSVAL_G; default cos7 <= COSVAL_G; endcase else cos7 <= cos7; /* The 22x18 multipliers */ always @(posedge clk) /* prod0 <= cos0 * x0 + offset; offset added for proper rounding. Uses shifts, avoids a multipier. */ if (~rst) prod0_delayed <= 'sd0; else if (clk_en) prod0_delayed <= {{(reg_width - dta_in_width){x0[dta_in_width-1]}}, x0, {scale{1'b0}}} + offset; else prod0_delayed <= prod0_delayed; always @(posedge clk) if (~rst) prod0 <= 'sd0; else if (clk_en) prod0 <= prod0_delayed; else prod0 <= prod0; mult22x16 mult_prod1(clk, clk_en, rst, prod1, cos1, x1); /* prod1 <= cos1 * x1; */ mult22x16 mult_prod2(clk, clk_en, rst, prod2, cos2, x2); /* prod2 <= cos2 * x2; */ mult22x16 mult_prod3(clk, clk_en, rst, prod3, cos3, x3); /* prod3 <= cos3 * x3; */ always @(posedge clk) /* prod4 <= cos4 * x4. Uses shifts, avoids a multipier. */ if (~rst) prod4_delayed <= 'sd0; else if (clk_en) case (state) STATE_0, STATE_3, STATE_4, STATE_7: prod4_delayed <= {{(reg_width - dta_in_width){x4[dta_in_width-1]}}, x4, {scale{1'b0}}}; STATE_1, STATE_2, STATE_5, STATE_6: prod4_delayed <= {{(reg_width - dta_in_width-1){minus_x4[dta_in_width]}}, minus_x4, {scale{1'b0}}}; default prod4_delayed <= {{(reg_width - dta_in_width){x4[dta_in_width-1]}}, x4, {scale{1'b0}}}; endcase else prod4_delayed <= prod4_delayed; always @(posedge clk) if (~rst) prod4 <= 'sd0; else if (clk_en) prod4 <= prod4_delayed; else prod4 <= prod4; mult22x16 mult_prod5(clk, clk_en, rst, prod5, cos5, x5); /* prod5 <= cos5 * x5; */ mult22x16 mult_prod6(clk, clk_en, rst, prod6, cos6, x6); /* prod6 <= cos6 * x6; */ mult22x16 mult_prod7(clk, clk_en, rst, prod7, cos7, x7); /* prod7 <= cos7 * x7; */ always @(posedge clk) if (~rst) begin sum02 <= 'sd0; sum46 <= 'sd0; sum13 <= 'sd0; sum57 <= 'sd0; sum0246 <= 'sd0; sum1357 <= 'sd0; end else if (clk_en) begin sum02 <= {{(reg_width-prod_width){prod0[prod_width-1]}}, prod0} + {{(reg_width-prod_width){prod2[prod_width-1]}}, prod2}; sum46 <= {{(reg_width-prod_width){prod4[prod_width-1]}}, prod4} + {{(reg_width-prod_width){prod6[prod_width-1]}}, prod6}; sum13 <= {{(reg_width-prod_width){prod1[prod_width-1]}}, prod1} + {{(reg_width-prod_width){prod3[prod_width-1]}}, prod3}; sum57 <= {{(reg_width-prod_width){prod5[prod_width-1]}}, prod5} + {{(reg_width-prod_width){prod7[prod_width-1]}}, prod7}; sum0246 <= sum02 + sum46; sum1357 <= sum13 + sum57; end else begin sum02 <= sum02; sum46 <= sum46; sum13 <= sum13; sum57 <= sum57; sum0246 <= sum0246; sum1357 <= sum1357; end always @(posedge clk) if (~rst) begin dta_out_val_0 <= 1'b0; dta_out_val_1 <= 1'b0; dta_out_val_2 <= 1'b0; dta_out_val_3 <= 1'b0; dta_out_val_4 <= 1'b0; dta_out_valid <= 1'b0; end else if (clk_en) begin dta_out_val_0 <= (state != STATE_IDLE); dta_out_val_1 <= dta_out_val_0; dta_out_val_2 <= dta_out_val_1; dta_out_val_3 <= dta_out_val_2; dta_out_val_4 <= dta_out_val_3; dta_out_valid <= dta_out_val_4; end else begin dta_out_val_0 <= dta_out_val_0; dta_out_val_1 <= dta_out_val_1; dta_out_val_2 <= dta_out_val_2; dta_out_val_3 <= dta_out_val_3; dta_out_val_4 <= dta_out_val_4; dta_out_valid <= dta_out_valid; end /* * Looking at the equation for the 1d idct, the final step when calculating * y0..y3 is addition, when calculating y4..y7 subtraction. * register add_0 is 1 when one needs to add, 0 when one needs to subtract. */ always @(posedge clk) if (~rst) add_0 <= 1'd0; else if (clk_en) case (state) STATE_0, STATE_1, STATE_2, STATE_3: add_0 <= 1'b1; STATE_4, STATE_6, STATE_5, STATE_7: add_0 <= 1'b0; default add_0 <= 1'b0; endcase else add_0 <= add_0; always @(posedge clk) if (~rst) begin add_1 <= 1'b0; add_2 <= 1'b0; add_3 <= 1'b0; end else if (clk_en) begin add_1 <= add_0; add_2 <= add_1; add_3 <= add_2; end else begin add_1 <= add_1; add_2 <= add_2; add_3 <= add_3; end always @(posedge clk) if (~rst) y <= 'sd0; else if (clk_en && add_3) y <= sum0246 + sum1357; else if (clk_en) y <= sum0246 - sum1357; else y <= y; always @(posedge clk) if (~rst) dta_out <= 'sd0; else if (clk_en) dta_out <= y >>> dta_shift; else dta_out <= dta_out; `ifdef DEBUG_IDCT_1D always @(posedge clk) begin $strobe("%m\toffset: %d", offset); $strobe("%m\tcos0: -------- cos1: %8d cos2: %8d cos3: %8d cos4: -------- cos5: %8d cos6: %8d cos7: %8d", cos1, cos2, cos3, cos5, cos6, cos7); $strobe("%m\t x0: %8d x1: %8d x2: %8d x3: %8d x4: %8d x5: %8d x6: %8d x7: %8d", x0, x1, x2, x3, x4, x5, x6, x7); $strobe("%m\tprod0: %d prod1: %d prod2: %d prod3: %d prod4: %d prod5: %d prod6: %d prod7: %d", prod0, prod1, prod2, prod3, prod4, prod5, prod6, prod7); $strobe("%m\tsum02: %8d sum46: %8d sum13: %8d sum57: %8d", sum02, sum46, sum13, sum57); $strobe("%m\tsum0246: %8d sum1357: %8d", sum0246, sum1357); $strobe("%m\ty: %8d", y); $strobe("%m\tdta_out: %8d", dta_out); end `endif endmodule /* * 8x8 transpose ram. Swaps rows and columns. * Modeled after the chasing pointers algorithm described in * "Architecture and Bus-Arbitration Schemes for MPEG-2 Video Decoder", * Jui-Hua Li and Nam Ling, * IEEE Transactions on Circuits and Systems for Video Technology, Vol. 9, No. 5, August 1999, p.727-736. */ module transpose(clk, clk_en, rst, dta_in, dta_in_valid, dta_out, dta_out_valid, dta_out_eob); parameter dta_width=16; // data width; input clk; // clock input clk_en; // clock enable input rst; // synchronous active low reset input [dta_width -1:0]dta_in; // data in input dta_in_valid; output [dta_width -1:0]dta_out; // data out output reg dta_out_valid; output reg dta_out_eob; reg read_direction; reg write_direction; reg [5:0]rd_cnt; wire [5:0]rd_addr; reg [5:0]wr_cnt; wire [5:0]wr_addr; parameter [1:0] STATE_IDLE = 2'd0, STATE_READING = 2'd1; reg [1:0]state = STATE_IDLE; reg [1:0]next; /* * We've got one dual-port ram, with simultaneous reads and writes. * * 1. Wait reading data until address 50 is being written. * 2. When address 50 is being written, read address 0. * 3. Once address 50 has been written, whenever the write address increments, the read address also increments. * 4. When address 63 has been written, writing direction reverses: * if we were writing in row order, we begin writing in column order, * if we were writing in column order, we begin writing in row order. * 5. When address 63 has been read, reading direction reverses: * if we were reading in row order, we begin reading in column order, * if we were reading in column order, we begin reading in row order. */ /* next state logic */ always @* case (state) STATE_IDLE: if (dta_in_valid && (wr_cnt == 6'd49)) next = STATE_READING; else next = STATE_IDLE; STATE_READING: next = STATE_READING; default next = STATE_IDLE; endcase /* state */ always @(posedge clk) if(~rst) state <= STATE_IDLE; else if (clk_en) state <= next; else state <= state; /* read counter */ always @(posedge clk) if (~rst) rd_cnt <= 6'b0; else if (clk_en && (state == STATE_READING) && dta_in_valid) rd_cnt <= rd_cnt + 6'd1; else rd_cnt <= rd_cnt; always @(posedge clk) if (~rst) dta_out_valid <= 1'b0; else if (clk_en) dta_out_valid <= dta_in_valid && (state == STATE_READING); else dta_out_valid <= dta_out_valid; always @(posedge clk) if (~rst) dta_out_eob <= 1'b0; else if (clk_en) dta_out_eob <= (rd_cnt == 6'd63); else dta_out_eob <= dta_out_eob; always @(posedge clk) if (~rst) wr_cnt <= 6'b0; else if (clk_en && dta_in_valid) wr_cnt <= wr_cnt + 6'd1; else wr_cnt <= wr_cnt; always @(posedge clk) if (~rst) read_direction <= 1'b0; else if (clk_en && (rd_cnt == 6'd63)) read_direction <= ~read_direction; else read_direction <= read_direction; always @(posedge clk) if (~rst) write_direction <= 1'b1; else if (clk_en && dta_in_valid && (wr_cnt == 6'd63)) write_direction <= ~write_direction; else write_direction <= write_direction; assign wr_addr = write_direction ? wr_cnt : {wr_cnt[2:0], wr_cnt[5:3]}; // swap rows and columns in address assign rd_addr = read_direction ? rd_cnt : {rd_cnt[2:0], rd_cnt[5:3]}; // swap rows and columns in address /* transposition memory */ generic_dpram #(.aw(6), // number of bits in address bus .dw(dta_width)) // number of bits in data bus ram0 ( // read port .rclk(clk), // read clock, rising edge trigger .rrst(rst), // read port reset, active high .rce(1'b1), // read port chip enable, active high .oe(1'b1), // output enable, active high .raddr(rd_addr), // read address .do(dta_out), // data output // write port .wclk(clk), // write clock, rising edge trigger .wrst(rst), // write port reset, active high .wce(clk_en), // write port chip enable, active high .we(dta_in_valid), // write enable, active high .waddr(wr_addr), // write address, after inverse zigzag .di(dta_in) // data input ); `ifdef DEBUG_TRANSPOSE always @(posedge clk) begin case (state) STATE_IDLE: $strobe("%m\tSTATE_IDLE wr_cnt: %d rd_cnt: %d wr_dir: %d rd_dir: %d dta_in: %d dta_in_valid: %d dta_out: %d dta_out_valid: %d dta_out_eob: %d", wr_cnt, rd_cnt, write_direction, read_direction, dta_in, dta_in_valid, dta_out, dta_out_valid, dta_out_eob); STATE_READING: $strobe("%m\tSTATE_READING wr_cnt: %d rd_cnt: %d wr_dir: %d rd_dir: %d dta_in: %d dta_in_valid: %d dta_out: %d dta_out_valid: %d dta_out_eob: %d", wr_cnt, rd_cnt, write_direction, read_direction, dta_in, dta_in_valid, dta_out, dta_out_valid, dta_out_eob); default $strobe("%m\t***Unknown state wr_cnt: %d rd_cnt: %d wr_dir: %d rd_dir: %d dta_in: %d dta_in_valid: %d dta_out: %d dta_out_valid: %d dta_out_eob: %d", wr_cnt, rd_cnt, write_direction, read_direction, dta_in, dta_in_valid, dta_out, dta_out_valid, dta_out_eob); endcase end `endif endmodule /* * Clips idct output to -256..255 */ module clip_col(clk, clk_en, rst, dta_in, dta_in_valid, dta_out, dta_out_valid); input clk; // clock input clk_en; // clock enable input rst; // synchronous active low reset input signed [20:0]dta_in; // data in input dta_in_valid; output reg signed [8:0]dta_out; // data out output reg dta_out_valid; always @(posedge clk) if (~rst) dta_out <= 'sd0; else if (clk_en && ((dta_in[20:8] == 13'b1111111111111) || (dta_in[20:8] == 13'b000000000000))) dta_out <= dta_in[8:0]; else if (clk_en) dta_out <= {dta_in[20], {8{~dta_in[20]}}}; // clipping else dta_out <= dta_out; always @(posedge clk) if (~rst) dta_out_valid <= 'sd0; else if (clk_en) dta_out_valid <= dta_in_valid; else dta_out_valid <= dta_out_valid; endmodule module mult22x16(clk, clk_en, rst, product, multiplicand, multiplier); input clk; input clk_en; input rst; input signed [21:0] multiplier; input signed [15:0] multiplicand; output reg signed [37:0] product; /* * the following code implements * always @(posedge clk) * product <= multiplier * multiplicand; * using only a single 18x18 multiplier, a few shifts and adders. * * See "Expanding Virtex-II" by Ken Chapman, Xilinx UK, 06/30/2001 for * a discussion about expanding multipliers. * */ wire /* unsigned */ [3:0] multiplier_lsb; wire signed [17:0] multiplier_msb; reg signed [19:0] partial_product_1; reg signed [33:0] partial_product_2; assign multiplier_lsb = multiplier[3:0]; assign multiplier_msb = multiplier[21:4]; always @(posedge clk) if (~rst) partial_product_2 <= 34'b0; else if (clk_en) partial_product_2 <= multiplier_msb * multiplicand; else partial_product_2 <= partial_product_2; always @(posedge clk) if (~rst) partial_product_1 <= 20'b0; else if (clk_en) partial_product_1 <= (multiplier_lsb[0] ? {{4{multiplicand[15]}}, multiplicand } : 20'b0) + (multiplier_lsb[1] ? {{3{multiplicand[15]}}, multiplicand, 1'b0} : 20'b0) + (multiplier_lsb[2] ? {{2{multiplicand[15]}}, multiplicand, 2'b0} : 20'b0) + (multiplier_lsb[3] ? {{1{multiplicand[15]}}, multiplicand, 3'b0} : 20'b0); else partial_product_1 <= partial_product_1; always @(posedge clk) if (~rst) product <= 38'b0; else if (clk_en) product <= {partial_product_2, 4'b0} + { {18{partial_product_1[19]}}, partial_product_1}; else product <= product; endmodule /* not truncated */