URL
https://opencores.org/ocsvn/mpmc8/mpmc8/trunk
Subversion Repositories mpmc8
[/] [mpmc8/] [trunk/] [rtl/] [mpmc9.sv] - Rev 4
Compare with Previous | Blame | View Log
`timescale 1ns / 1ps
// ============================================================================
// __
// \\__/ o\ (C) 2015-2022 Robert Finch, Waterloo
// \ __ / All rights reserved.
// \/_// robfinch<remove>@finitron.ca
// ||
//
// BSD 3-Clause License
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// 5000 LUTs, 28 BRAM
// ============================================================================
//
//`define RED_SCREEN 1'b1
import mpmc9_pkg::*;
module mpmc9(
rst_i, clk100MHz,
clk0, cyc0, stb0, ack0, we0, sel0, adr0, dati0, dato0,
clk1, cs1, cyc1, stb1, ack1, we1, sel1, adr1, dati1, dato1, sr1, cr1, rb1,
clk2, cyc2, stb2, ack2, we2, sel2, adr2, dati2, dato2,
clk3, cyc3, stb3, ack3, we3, sel3, adr3, dati3, dato3,
clk4, cyc4, stb4, ack4, we4, sel4, adr4, dati4, dato4,
clk5, cyc5, stb5, ack5, sel5, adr5, dato5, spriteno,
clk6, cyc6, stb6, ack6, we6, sel6, adr6, dati6, dato6,
clk7, cs7, cyc7, stb7, ack7, we7, sel7, adr7, dati7, dato7, sr7, cr7, rb7,
mem_ui_rst, mem_ui_clk, calib_complete,
rstn, app_addr, app_cmd, app_en, app_wdf_data, app_wdf_end, app_wdf_mask, app_wdf_wren,
app_rd_data, app_rd_data_valid, app_rd_data_end, app_rdy, app_wdf_rdy,
ch, state
);
input rst_i;
input clk100MHz;
// Channel 0 is reserved for bitmapped graphics display.
//
parameter C0W = 128; // Channel zero width
parameter STREAM0 = TRUE;
parameter STRIPS0 = 6'd63;
input clk0;
input cyc0;
input stb0;
output ack0;
input [C0W/8-1:0] sel0;
input we0;
input [31:0] adr0;
input [C0W-1:0] dati0;
output reg [C0W-1:0] dato0;
reg [C0W-1:0] dato0n;
// Channel 1 is reserved for cpu1
parameter C1W = 128;
parameter STREAM1 = FALSE;
parameter STRIPS1 = 6'd0;
input clk1;
input cs1;
input cyc1;
input stb1;
output ack1;
input we1;
input [C1W/8-1:0] sel1;
input [31:0] adr1;
input [C1W-1:0] dati1;
output reg [C1W-1:0] dato1;
input sr1;
input cr1;
output rb1;
// Channel 2 is reserved for the ethernet controller
parameter C2W = 32;
parameter STREAM2 = FALSE;
parameter STRIPS2 = 6'd31;
input clk2;
input cyc2;
input stb2;
output ack2;
input we2;
input [C2W/8-1:0] sel2;
input [31:0] adr2;
input [C2W-1:0] dati2;
output reg [C2W-1:0] dato2;
// Channel 3 is reserved for the audio controller
parameter C3W = 16;
parameter STREAM3 = TRUE;
parameter STRIPS3 = 6'd63;
input clk3;
input cyc3;
input stb3;
output ack3;
input we3;
input [C3W/8-1:0] sel3;
input [31:0] adr3;
input [C3W-1:0] dati3;
output reg [C3W-1:0] dato3;
// Channel 4 is reserved for the graphics controller
parameter C4W = 128;
parameter STREAM4 = FALSE;
parameter STRIPS4 = 6'd0;
input clk4;
input cyc4;
input stb4;
output ack4;
input we4;
input [C4W/8-1:0] sel4;
input [31:0] adr4;
input [C4W-1:0] dati4;
output reg [C4W-1:0] dato4;
// Channel 5 is reserved for sprite DMA, which is read-only
parameter C5W = 64;
parameter STREAM5 = TRUE;
parameter STRIPS5 = 6'd15;
input clk5;
input cyc5;
input stb5;
output ack5;
input [C5W/8-1:0] sel5;
input [5:0] spriteno;
input [31:0] adr5;
output reg [C5W-1:0] dato5;
// Channel 6 is reserved for the SD/MMC controller
parameter C6W = 128;
parameter STREAM6 = FALSE;
parameter STRIPS6 = 6'd63;
input clk6;
input cyc6;
input stb6;
output ack6;
input we6;
input [C6W/8-1:0] sel6;
input [31:0] adr6;
input [C6W-1:0] dati6;
output reg [C6W-1:0] dato6;
// Channel 7 is reserved for the cpu
parameter C7W = 16;
parameter C7R = 16;
parameter STREAM7 = FALSE;
parameter STRIPS7 = 6'd3;
input clk7;
input cs7;
input cyc7;
input stb7;
output ack7;
input we7;
input [C7W/8-1:0] sel7;
input [31:0] adr7;
input [C7W-1:0] dati7;
output reg [C7R-1:0] dato7;
input sr7;
input cr7;
output rb7;
// MIG interface signals
input mem_ui_rst;
input mem_ui_clk;
input calib_complete;
output rstn;
output [AMSB:0] app_addr;
output [2:0] app_cmd;
output reg app_en;
output reg [127:0] app_wdf_data;
output [15:0] app_wdf_mask;
output app_wdf_end;
output app_wdf_wren;
input [127:0] app_rd_data;
input app_rd_data_valid;
input app_rd_data_end;
input app_rdy;
input app_wdf_rdy;
// Debugging
output reg [3:0] ch;
output [3:0] state;
integer n;
integer n1;
integer n2;
wire [31:0] app_waddr;
wire [31:0] adr;
wire [127:0] dat128;
reg [15:0] wmask;
reg [127:0] rmw_data;
reg [3:0] nch;
reg [5:0] sreg;
reg rstn;
reg [5:0] nack_to = 6'd0;
reg [5:0] spriteno_r;
wire cs0 = cyc0 && stb0 && adr0[31:29]==3'h0;
wire ics1 = cyc1 & stb1 & cs1;
wire cs2 = cyc2 && stb2 && adr2[31:29]==3'h0;
wire cs3 = cyc3 && stb3 && adr3[31:29]==3'h0;
wire cs4 = cyc4 && stb4 && adr4[31:29]==3'h0;
wire cs5 = cyc5 && stb5 && adr5[31:29]==3'h0;
wire cs6 = cyc6 && stb6 && adr6[31:29]==3'h0;
wire ics7 = cyc7 & stb7 & cs7;
reg acki0,acki1,acki2,acki3,acki4,acki5,acki6,acki7;
wire do_wr;
wire do_wr0;
wire do_wr1;
wire do_wr2;
wire do_wr3;
wire do_wr4;
wire do_wr5;
wire do_wr6;
wire do_wr7;
reg [5:0] num_strips;
wire [5:0] req_strip_cnt; // count of requested strips
wire [5:0] resp_strip_cnt; // count of response strips
reg [AMSB:0] app_addr;
reg [15:0] refcnt; // refreshing not used, its automnatic
reg refreq;
wire refack;
wire [15:0] tocnt; // memory access timeout counter
reg [3:0] resv_ch [0:NAR-1];
reg [31:0] resv_adr [0:NAR-1];
// Cross clock domain signals
wire cs0xx;
wire we0xx;
wire [C0W/8-1:0] sel0xx;
wire [31:0] adr0xx;
wire [C0W-1:0] dati0xx;
wire cs1xx;
wire we1xx;
wire [15:0] sel1xx;
wire [31:0] adr1xx;
wire [127:0] dati1xx;
wire sr1xx;
wire cr1xx;
wire cs2xx;
wire we2xx;
wire [C2W/8-1:0] sel2xx;
wire [31:0] adr2xx;
wire [C2W-1:0] dati2xx;
wire cs3xx;
wire we3xx;
wire [C3W/8-1:0] sel3xx;
wire [31:0] adr3xx;
wire [C3W-1:0] dati3xx;
wire cs4xx;
wire we4xx;
wire [C4W/8-1:0] sel4xx;
wire [31:0] adr4xx;
wire [C4W-1:0] dati4xx;
wire cs5xx;
wire we5xx;
wire [C5W/8-1:0] sel5xx;
wire [31:0] adr5xx;
wire [C5W-1:0] dati5xx;
wire [5:0] spritenoxx;
wire cs6xx;
wire we6xx;
wire [C6W/8-1:0] sel6xx;
wire [31:0] adr6xx;
wire [C6W-1:0] dati6xx;
wire cs7xx;
wire we7xx;
wire [C7W/8-1:0] sel7xx;
wire [31:0] adr7xx;
wire [C7W-1:0] dati7xx;
wire sr7xx;
wire cr7xx;
reg [7:0] to_cnt;
// Terminate the ack signal as soon as the circuit select goes away.
assign ack0 = acki0 & cs0;
assign ack1 = acki1 & ics1;
assign ack2 = acki2 & cs2;
assign ack3 = acki3 & cs3;
assign ack4 = acki4 & cs4;
assign ack5 = acki5 & cs5;
assign ack6 = acki6 & cs6;
assign ack7 = acki7 & ics7;
wire pre_ack0;
wire pre_ack1;
wire pre_ack2;
wire pre_ack3;
wire pre_ack4;
wire pre_ack5;
wire pre_ack6;
wire pre_ack7;
// Used to transition state to IDLE at end of access
// We dont transition to idle until a negative edge is seen on ack
wire ne_acki0;
wire ne_acki1;
wire ne_acki2;
wire ne_acki3;
wire ne_acki4;
wire ne_acki5;
wire ne_acki6;
wire ne_acki7;
wire pe_acki0;
wire pe_acki1;
wire pe_acki2;
wire pe_acki3;
wire pe_acki4;
wire pe_acki5;
wire pe_acki6;
wire pe_acki7;
edge_det ed_acki0 (.rst(rst_i), .clk(mem_ui_clk), .ce(1'b1), .i(acki0), .pe(pe_acki0), .ne(ne_acki0), .ee());
edge_det ed_acki1 (.rst(rst_i), .clk(mem_ui_clk), .ce(1'b1), .i(acki1), .pe(pe_acki1), .ne(ne_acki1), .ee());
edge_det ed_acki2 (.rst(rst_i), .clk(mem_ui_clk), .ce(1'b1), .i(acki2), .pe(pe_acki2), .ne(ne_acki2), .ee());
edge_det ed_acki3 (.rst(rst_i), .clk(mem_ui_clk), .ce(1'b1), .i(acki3), .pe(pe_acki3), .ne(ne_acki3), .ee());
edge_det ed_acki4 (.rst(rst_i), .clk(mem_ui_clk), .ce(1'b1), .i(acki4), .pe(pe_acki4), .ne(ne_acki4), .ee());
edge_det ed_acki5 (.rst(rst_i), .clk(mem_ui_clk), .ce(1'b1), .i(acki5), .pe(pe_acki5), .ne(ne_acki5), .ee());
edge_det ed_acki6 (.rst(rst_i), .clk(mem_ui_clk), .ce(1'b1), .i(acki6), .pe(pe_acki6), .ne(ne_acki6), .ee());
edge_det ed_acki7 (.rst(rst_i), .clk(mem_ui_clk), .ce(1'b1), .i(acki7), .pe(pe_acki7), .ne(ne_acki7), .ee());
wire [127:0] ch0_rdat_c, ch0_rdat_s, ch0_rdat;
wire [127:0] ch1_rdat, ch1_rdat_c, ch1_rdat_s;
wire [127:0] ch2_rdat, ch2_rdat_c, ch2_rdat_s;
wire [127:0] ch3_rdat, ch3_rdat_c, ch3_rdat_s;
wire [127:0] ch4_rdat, ch4_rdat_c, ch4_rdat_s;
wire [127:0] ch5_rdat, ch5_rdat_c, ch5_rdat_s;
wire [127:0] ch6_rdat, ch6_rdat_c, ch6_rdat_s;
wire [127:0] ch7_rdat, ch7_rdat_c, ch7_rdat_s;
reg [127:0] ch0_rdatr;
reg [127:0] ch1_rdatr;
reg [127:0] ch2_rdatr;
reg [127:0] ch3_rdatr;
reg [127:0] ch4_rdatr;
reg [127:0] ch5_rdatr;
reg [127:0] ch6_rdatr;
reg [127:0] ch7_rdatr;
wire ch0_hit_c, ch0_hit_s;
wire ch1_hit_c, ch1_hit_s;
wire ch2_hit_c, ch2_hit_s;
wire ch3_hit_c, ch3_hit_s;
wire ch4_hit_c, ch4_hit_s;
wire ch5_hit_c, ch5_hit_s;
wire ch6_hit_c, ch6_hit_s;
wire ch7_hit_c, ch7_hit_s;
wire ch0_hit, ch1_hit, ch2_hit, ch3_hit;
wire ch4_hit, ch5_hit, ch6_hit, ch7_hit;
mpmc9_read_cache rc0 (
.rst(rst_i),
.wclk(mem_ui_clk),
.wr(app_rd_data_valid && !(
(STREAM0 && ch==4'd0) ||
(STREAM1 && ch==4'd1) ||
(STREAM2 && ch==4'd2) ||
(STREAM3 && ch==4'd3) ||
(STREAM4 && ch==4'd4) ||
(STREAM5 && ch==4'd5) ||
(STREAM6 && ch==4'd6) ||
(STREAM7 && ch==4'd7)
)),
.wadr({app_waddr[31:4],4'h0}),
.wdat(app_rd_data),
.inv(state==WRITE_DATA0),
.rclk0(STREAM0 ? 1'b0 : clk0),
.radr0(STREAM0 ? 32'h0 : {adr0xx[31:4],4'h0}),
.rdat0(ch0_rdat_c),
.hit0(ch0_hit_c),
.rclk1(STREAM1 ? 1'b0 : mem_ui_clk),
.radr1(STREAM1 ? 32'h0 : {adr1xx[31:4],4'h0}),
.rdat1(ch1_rdat_c),
.hit1(ch1_hit_c),
.rclk2(STREAM2 ? 1'b0 : mem_ui_clk),
.radr2(STREAM2 ? 32'h0 : {adr2xx[31:4],4'h0}),
.rdat2(ch2_rdat_c),
.hit2(ch2_hit_c),
.rclk3(STREAM3 ? 1'b0 : mem_ui_clk),
.radr3(STREAM3 ? 32'h0 : {adr3xx[31:4],4'h0}),
.rdat3(ch3_rdat_c),
.hit3(ch3_hit_c),
.rclk4(STREAM4 ? 1'b0 : mem_ui_clk),
.radr4(STREAM4 ? 32'h0 : {adr4xx[31:4],4'h0}),
.rdat4(ch4_rdat_c),
.hit4(ch4_hit_c),
.rclk5(STREAM5 ? 1'b0 : mem_ui_clk),
.radr5(STREAM5 ? 32'h0 : {adr5xx[31:4],4'h0}),
.rdat5(ch5_rdat_c),
.hit5(ch5_hit_c),
.rclk6(STREAM6 ? 1'b0 : mem_ui_clk),
.radr6(STREAM6 ? 32'h0 : {adr6xx[31:4],4'h0}),
.rdat6(ch6_rdat_c),
.hit6(ch6_hit_c),
.rclk7(STREAM7 ? 1'b0 : mem_ui_clk),
.radr7(STREAM7 ? 32'h0 : {adr7xx[31:4],4'h0}),
.rdat7(ch7_rdat_c),
.hit7(ch7_hit_c)
);
mpmc9_strm_read_cache ustrm0
(
.rst(rst_i),
.wclk(mem_ui_clk),
.wr(ch==4'd0 && app_rd_data_valid),
.wadr({app_waddr[31:4],4'h0}),
.wdat(app_rd_data),
.inv(1'b0),
.rclk(mem_ui_clk),
.radr({adr0xx[31:4],4'h0}),
.rdat(ch0_rdat_s),
.hit(ch0_hit_s)
);
mpmc9_strm_read_cache ustrm1
(
.rst(rst_i),
.wclk(mem_ui_clk),
.wr(ch==4'd1 && app_rd_data_valid),
.wadr({app_waddr[31:4],4'h0}),
.wdat(app_rd_data),
.inv(1'b0),
.rclk(mem_ui_clk),
.radr({adr1xx[31:4],4'h0}),
.rdat(ch1_rdat_s),
.hit(ch1_hit_s)
);
mpmc9_strm_read_cache ustrm2
(
.rst(rst_i),
.wclk(mem_ui_clk),
.wr(ch==4'd2 && app_rd_data_valid),
.wadr({app_waddr[31:4],4'h0}),
.wdat(app_rd_data),
.inv(1'b0),
.rclk(mem_ui_clk),
.radr({adr2xx[31:4],4'h0}),
.rdat(ch2_rdat_s),
.hit(ch2_hit_s)
);
mpmc9_strm_read_cache ustrm3
(
.rst(rst_i),
.wclk(mem_ui_clk),
.wr(ch==4'd3 && app_rd_data_valid),
.wadr({app_waddr[31:4],4'h0}),
.wdat(app_rd_data),
.inv(1'b0),
.rclk(mem_ui_clk),
.radr({adr3xx[31:4],4'h0}),
.rdat(ch3_rdat_s),
.hit(ch3_hit_s)
);
mpmc9_strm_read_cache ustrm4
(
.rst(rst_i),
.wclk(mem_ui_clk),
.wr(ch==4'd4 && app_rd_data_valid),
.wadr({app_waddr[31:4],4'h0}),
.wdat(app_rd_data),
.inv(1'b0),
.rclk(mem_ui_clk),
.radr({adr4xx[31:4],4'h0}),
.rdat(ch4_rdat_s),
.hit(ch4_hit_s)
);
mpmc9_spr_read_cache usprrc5
(
.rst(rst_i),
.wclk(mem_ui_clk),
.spr_num(spriteno[4:0]),
.wr(ch==4'd5 && app_rd_data_valid),
.wadr({app_waddr[31:4],4'h0}),
.wdat(app_rd_data),
.inv(1'b0),
.rclk(mem_ui_clk),
.radr({adr5xx[31:4],4'h0}),
.rdat(ch5_rdat_s),
.hit(ch5_hit_s)
);
mpmc9_strm_read_cache ustrm6
(
.rst(rst_i),
.wclk(mem_ui_clk),
.wr(ch==4'd6 && app_rd_data_valid),
.wadr({app_waddr[31:4],4'h0}),
.wdat(app_rd_data),
.inv(1'b0),
.rclk(mem_ui_clk),
.radr({adr6xx[31:4],4'h0}),
.rdat(ch6_rdat_s),
.hit(ch6_hit_s)
);
mpmc9_strm_read_cache ustrm7
(
.rst(rst_i),
.wclk(mem_ui_clk),
.wr(ch==4'd7 && app_rd_data_valid),
.wadr({app_waddr[31:4],4'h0}),
.wdat(app_rd_data),
.inv(1'b0),
.rclk(mem_ui_clk),
.radr({adr7xx[31:4],4'h0}),
.rdat(ch7_rdat_s),
.hit(ch7_hit_s)
);
// These muxes will be reduced to wires.
assign ch0_hit = STREAM0 ? ch0_hit_s : ch0_hit_c;
assign ch0_rdat = STREAM0 ? ch0_rdat_s : ch0_rdat_c;
assign ch1_hit = STREAM1 ? ch1_hit_s : ch1_hit_c;
assign ch1_rdat = STREAM1 ? ch1_rdat_s : ch1_rdat_c;
assign ch2_hit = STREAM2 ? ch2_hit_s : ch2_hit_c;
assign ch2_rdat = STREAM2 ? ch2_rdat_s : ch2_rdat_c;
assign ch3_hit = STREAM3 ? ch3_hit_s : ch3_hit_c;
assign ch3_rdat = STREAM3 ? ch3_rdat_s : ch3_rdat_c;
assign ch4_hit = STREAM4 ? ch4_hit_s : ch4_hit_c;
assign ch4_rdat = STREAM4 ? ch4_rdat_s : ch4_rdat_c;
assign ch5_hit = STREAM5 ? ch5_hit_s : ch5_hit_c;
assign ch5_rdat = STREAM5 ? ch5_rdat_s : ch5_rdat_c;
assign ch6_hit = STREAM6 ? ch6_hit_s : ch6_hit_c;
assign ch6_rdat = STREAM6 ? ch6_rdat_s : ch6_rdat_c;
assign ch7_hit = STREAM7 ? ch7_hit_s : ch7_hit_c;
assign ch7_rdat = STREAM7 ? ch7_rdat_s : ch7_rdat_c;
// Register signals onto mem_ui_clk domain
mpmc9_sync #(.W(C0W)) usyn0
(
.clk(mem_ui_clk),
.cs_i(cs0),
.we_i(we0),
.sel_i(sel0),
.adr_i(adr0),
.dati_i(dati0),
.sr_i(1'b0),
.cr_i(1'b0),
.cs_o(cs0xx),
.we_o(we0xx),
.sel_o(sel0xx),
.adr_o(adr0xx),
.dati_o(dati0xx),
.sr_o(),
.cr_o()
);
mpmc9_sync #(.W(C1W)) usyn1
(
.clk(mem_ui_clk),
.cs_i(ics1),
.we_i(we1),
.sel_i(sel1),
.adr_i(adr1),
.dati_i(dati1),
.sr_i(sr1),
.cr_i(cr1),
.cs_o(cs1xx),
.we_o(we1xx),
.sel_o(sel1xx),
.adr_o(adr1xx),
.dati_o(dati1xx),
.sr_o(sr1xx),
.cr_o(cr1xx)
);
mpmc9_sync #(.W(C2W)) usyn2
(
.clk(mem_ui_clk),
.cs_i(cs2),
.we_i(we2),
.sel_i(sel2),
.adr_i(adr2),
.dati_i(dati2),
.sr_i(1'b0),
.cr_i(1'b0),
.cs_o(cs2xx),
.we_o(we2xx),
.sel_o(sel2xx),
.adr_o(adr2xx),
.dati_o(dati2xx),
.sr_o(),
.cr_o()
);
mpmc9_sync #(.W(C3W)) usyn3
(
.clk(mem_ui_clk),
.cs_i(cs3),
.we_i(we3),
.sel_i(sel3),
.adr_i(adr3),
.dati_i(dati3),
.sr_i(1'b0),
.cr_i(1'b0),
.cs_o(cs3xx),
.we_o(we3xx),
.sel_o(sel3xx),
.adr_o(adr3xx),
.dati_o(dati3xx),
.sr_o(),
.cr_o()
);
mpmc9_sync #(.W(C4W)) usyn4
(
.clk(mem_ui_clk),
.cs_i(cs4),
.we_i(we4),
.sel_i(sel4),
.adr_i(adr4),
.dati_i(dati4),
.sr_i(1'b0),
.cr_i(1'b0),
.cs_o(cs4xx),
.we_o(we4xx),
.sel_o(sel4xx),
.adr_o(adr4xx),
.dati_o(dati4xx),
.sr_o(),
.cr_o()
);
mpmc9_sync #(.W(C5W)) usyn5
(
.clk(mem_ui_clk),
.cs_i(cs5),
.we_i(1'b0),
.sel_i(sel5),
.adr_i(adr5),
.dati_i(dati5),
.sr_i(1'b0),
.cr_i(1'b0),
.cs_o(cs5xx),
.we_o(),
.sel_o(sel5xx),
.adr_o(adr5xx),
.dati_o(dati5xx),
.sr_o(),
.cr_o()
);
mpmc9_sync #(.W(C6W)) usyn6
(
.clk(mem_ui_clk),
.cs_i(cs6),
.we_i(we6),
.sel_i(sel6),
.adr_i(adr6),
.dati_i(dati6),
.sr_i(1'b0),
.cr_i(1'b0),
.cs_o(cs6xx),
.we_o(we6xx),
.sel_o(sel6xx),
.adr_o(adr6xx),
.dati_o(dati6xx),
.sr_o(),
.cr_o()
);
mpmc9_sync #(.W(C7R)) usyn7
(
.clk(mem_ui_clk),
.cs_i(cs7),
.we_i(we7),
.sel_i(sel7),
.adr_i(adr7),
.dati_i(dati7),
.sr_i(sr7),
.cr_i(cr7),
.cs_o(cs7xx),
.we_o(we7xx),
.sel_o(sel7xx),
.adr_o(adr7xx),
.dati_o(dati7xx),
.sr_o(sr7xx),
.cr_o(cr7xx)
);
reg [19:0] rst_ctr;
always @(posedge clk100MHz)
if (rst_i)
rst_ctr <= 24'd0;
else begin
if (!rst_ctr[15])
rst_ctr <= rst_ctr + 2'd1;
rstn <= rst_ctr[15];
end
reg toggle; // CPU1 / CPU0 priority toggle
reg toggle_sr;
reg [19:0] resv_to_cnt;
reg sr1x,sr7x;
reg [127:0] dati128;
// Detect cache hits on read caches
// For the sprite channel, reading the 64-bits of a strip not beginning at
// a 64-byte aligned paragraph only checks for the 64 bit address adr[5:3].
// It's assumed that a 4x128-bit strips were read the by the previous access.
// It's also assumed that the strip address won't match because there's more
// than one sprite and sprite accesses are essentially random.
wire ch0_taghit = cs0xx && !we0xx && ch0_hit;
wire ch1_taghit = ics1 && !we1xx && cs1xx && ch1_hit;
wire ch2_taghit = !we2xx && cs2xx && ch2_hit;
wire ch3_taghit = !we3xx && cs3xx && ch3_hit;
wire ch4_taghit = !we4xx && cs4xx && ch4_hit;
wire ch5_taghit = cs5xx && ch5_hit;
wire ch6_taghit = !we6xx && cs6xx && ch6_hit;
wire ch7_taghit = cs7xx && !we7xx && ch7_hit;
always_comb
begin
sr1x = FALSE;
if (ch1_taghit)
sr1x = sr1xx;
end
always_comb
begin
sr7x = FALSE;
if (ch7_taghit)
sr7x = sr7xx;
end
// Select the channel
mpmc9_ch_prioritize uchp1
(
.clk(mem_ui_clk),
.state(state),
.cs0(cs0xx),
.cs1(cs1xx),
.cs2(cs2xx),
.cs3(cs3xx),
.cs4(cs4xx),
.cs5(cs5xx),
.cs6(cs6xx),
.cs7(cs7xx),
.we0(we0xx),
.we1(we1xx),
.we2(we2xx),
.we3(we3xx),
.we4(we4xx),
.we5(1'b0),
.we6(we6xx),
.we7(we7xx),
.ch0_taghit(ch0_taghit),
.ch1_taghit(ch1_taghit),
.ch2_taghit(ch2_taghit),
.ch3_taghit(ch3_taghit),
.ch4_taghit(ch4_taghit),
.ch5_taghit(ch5_taghit),
.ch6_taghit(ch6_taghit),
.ch7_taghit(ch7_taghit),
.ch(nch)
);
always_ff @(posedge mem_ui_clk)
if (state==IDLE || (state==PRESET1 && do_wr))
ch <= nch;
mpmc9_addr_select
uadrs1
(
.rst(mem_ui_rst),
.clk(mem_ui_clk),
.state(state),
.ch(nch),
.adr0(adr0xx),
.adr1(adr1xx),
.adr2(adr2xx),
.adr3(adr3xx),
.adr4(adr4xx),
.adr5(adr5xx),
.adr6(adr6xx),
.adr7(adr7xx),
.adr(adr)
);
wire [2:0] app_addr3;
mpmc9_addr_gen uagen1
(
.rst(mem_ui_rst),
.clk(mem_ui_clk),
.state(state),
.rdy(app_rdy),
.num_strips(num_strips),
.strip_cnt(req_strip_cnt),
.addr_base(adr),
.addr({app_addr3,app_addr})
);
mpmc9_waddr_gen uwadgen1
(
.rst(mem_ui_rst),
.clk(mem_ui_clk),
.state(state),
.valid(app_rd_data_valid),
.num_strips(num_strips),
.strip_cnt(resp_strip_cnt),
.addr_base(adr),
.addr(app_waddr)
);
// Setting the write mask
reg [15:0] wmask0;
reg [15:0] wmask1;
reg [15:0] wmask2;
reg [15:0] wmask3;
reg [15:0] wmask4;
reg [15:0] wmask5;
reg [15:0] wmask6;
reg [15:0] wmask7;
mpmc9_set_write_mask
#(
.C0W(C0W),
.C1W(C1W),
.C2W(C2W),
.C3W(C3W),
.C4W(C4W),
.C5W(C5W),
.C6W(C6W),
.C7W(C7W)
)
uswm1
(
.clk(mem_ui_clk),
.state(state),
.we0(we0xx),
.we1(we1xx),
.we2(we2xx),
.we3(we3xx),
.we4(we4xx),
.we5(1'b0),
.we6(we6xx),
.we7(we7xx),
.sel0(sel0xx),
.sel1(sel1xx),
.sel2(sel2xx),
.sel3(sel3xx),
.sel4(sel4xx),
.sel5(sel5xx),
.sel6(sel6xx),
.sel7(sel7xx),
.adr0(adr0xx),
.adr1(adr1xx),
.adr2(adr2xx),
.adr3(adr3xx),
.adr4(adr4xx),
.adr5(adr5xx),
.adr6(adr6xx),
.adr7(adr7xx),
.mask0(wmask0),
.mask1(wmask1),
.mask2(wmask2),
.mask3(wmask3),
.mask4(wmask4),
.mask5(wmask5),
.mask6(wmask6),
.mask7(wmask7)
);
// Setting the write data
mpmc9_data_select
#(
.C0W(C0W),
.C1W(C1W),
.C2W(C2W),
.C3W(C3W),
.C4W(C4W),
.C5W(C5W),
.C6W(C6W),
.C7W(C7W)
)
uds1
(
.clk(mem_ui_clk),
.state(state),
.ch(nch),
.dati0(dati0xx),
.dati1(dati1xx),
.dati2(dati2xx),
.dati3(dati3xx),
.dati4(dati4xx),
.dati5('d0),
.dati6(dati6xx),
.dati7(dati7xx),
.dato(dat128)
);
// Setting the data value. Unlike reads there is only a single strip involved.
// Force unselected byte lanes to $FF
wire [15:0] mem_wdf_mask2;
reg [127:0] dat128x;
genvar g;
generate begin
for (g = 0; g < 16; g = g + 1)
always_comb
if (mem_wdf_mask2[g])
dat128x[g*8+7:g*8] = 8'hFF;
else
dat128x[g*8+7:g*8] = dat128[g*8+7:g*8];
end
endgenerate
always_ff @(posedge mem_ui_clk)
if (mem_ui_rst)
app_wdf_data <= 128'd0;
else begin
if (state==PRESET2)
app_wdf_data <= dat128x;
else if (state==WRITE_TRAMP1)
app_wdf_data <= rmw_data;
end
generate begin
for (g = 0; g < 16; g = g + 1) begin
always_ff @(posedge mem_ui_clk)
begin
if (state==WRITE_TRAMP) begin
if (app_wdf_mask[g])
rmw_data[g*8+7:g*8] <= app_wdf_data[g*8+7:g*8];
else
rmw_data[g*8+7:g*8] <= app_rd_data[g*8+7:g*8];
end
end
end
end
endgenerate
always_ff @(posedge mem_ui_clk)
if (state==IDLE)
spriteno_r <= spritenoxx;
// Setting burst length
mpmc9_set_num_strips
#(
.S0(STRIPS0),
.S1(STRIPS1),
.S2(STRIPS2),
.S3(STRIPS3),
.S4(STRIPS4),
.S5(STRIPS5),
.S6(STRIPS6),
.S7(STRIPS7)
)
usns1
(
.clk(mem_ui_clk),
.state(state),
.ch(nch),
.we0(we0xx),
.we1(we1xx),
.we2(we2xx),
.we3(we3xx),
.we4(we4xx),
.we5(we5xx),
.we6(we6xx),
.we7(we7xx),
.num_strips(num_strips)
);
// Setting the data mask. Values are enabled when the data mask is zero.
mpmc9_mask_select umsks1
(
.rst(mem_ui_rst),
.clk(mem_ui_clk),
.state(state),
.ch(ch),
.wmask0(wmask0),
.wmask1(wmask1),
.wmask2(wmask2),
.wmask3(wmask3),
.wmask4(wmask4),
.wmask5(wmask5),
.wmask6(wmask6),
.wmask7(wmask7),
.mask(app_wdf_mask),
.mask2(mem_wdf_mask2)
);
// Setting output data. Force output data to zero when not selected to allow
// wire-oring the data.
mpmc9_data_output udo1
(
.clk0(clk0), .cs0(cs0), .adr0(adr0), .ch0_rdat(ch0_rdat), .dato0(dato0),
.clk1(clk1), .cs1(cs1), .adr1(adr1), .ch1_rdat(ch1_rdat), .dato1(dato1),
.clk2(clk2), .cs2(cs2), .adr2(adr2), .ch2_rdat(ch2_rdat), .dato2(dato2),
.clk3(clk3), .cs3(cs3), .adr3(adr3), .ch3_rdat(ch3_rdat), .dato3(dato3),
.clk4(clk4), .cs4(cs4), .adr4(adr4), .ch4_rdat(ch4_rdat), .dato4(dato4),
.clk5(clk5), .cs5(cs5), .adr5(adr5), .ch5_rdat(ch5_rdat), .dato5(dato5),
.clk6(clk6), .cs6(cs6), .adr6(adr6), .ch6_rdat(ch6_rdat), .dato6(dato6),
.clk7(clk7), .cs7(cs7), .adr7(adr7), .ch7_rdat(ch7_rdat), .dato7(dato7)
);
mpmc9_ack_gen #(.N(0)) uackg0
(
.rst(rst_i|mem_ui_rst),
.clk(mem_ui_clk),
.state(state),
.ch(ch),
.cs(cs0),
.adr(adr0xx),
.cr(1'b0),
.wr(do_wr),
.to(tocnt[9]),
.taghit(ch0_taghit),
.resv_ch(resv_ch),
.resv_adr(resv_adr),
.ack(acki0),
.pre_ack(pre_ack0)
);
mpmc9_ack_gen #(.N(1)) uackg1
(
.rst(rst_i|mem_ui_rst),
.clk(mem_ui_clk),
.state(state),
.ch(ch),
.cs(cs1&ics1),
.adr(adr1xx),
.cr(cr1xx),
.wr(do_wr),
.to(tocnt[9]),
.taghit(ch1_taghit),
.resv_ch(resv_ch),
.resv_adr(resv_adr),
.ack(acki1),
.pre_ack(pre_ack1)
);
mpmc9_ack_gen #(.N(2)) uackg2
(
.rst(rst_i|mem_ui_rst),
.clk(mem_ui_clk),
.state(state),
.ch(ch),
.cs(cs2),
.adr(adr2xx),
.cr(1'b0),
.wr(do_wr),
.to(tocnt[9]),
.taghit(ch2_taghit),
.resv_ch(resv_ch),
.resv_adr(resv_adr),
.ack(acki2),
.pre_ack(pre_ack2)
);
mpmc9_ack_gen #(.N(3)) uackg3
(
.rst(rst_i|mem_ui_rst),
.clk(mem_ui_clk),
.state(state),
.ch(ch),
.cs(cs3),
.adr(adr3xx),
.cr(1'b0),
.wr(do_wr),
.to(tocnt[9]),
.taghit(ch3_taghit),
.resv_ch(resv_ch),
.resv_adr(resv_adr),
.ack(acki3),
.pre_ack(pre_ack3)
);
mpmc9_ack_gen #(.N(4)) uackg4
(
.rst(rst_i|mem_ui_rst),
.clk(mem_ui_clk),
.state(state),
.ch(ch),
.cs(cs4),
.adr(adr4xx),
.cr(1'b0),
.wr(do_wr),
.to(tocnt[9]),
.taghit(ch4_taghit),
.resv_ch(resv_ch),
.resv_adr(resv_adr),
.ack(acki4),
.pre_ack(pre_ack4)
);
mpmc9_ack_gen #(.N(5)) uackg5
(
.rst(rst_i|mem_ui_rst),
.clk(mem_ui_clk),
.state(state),
.ch(ch),
.cs(cs5),
.adr(adr5xx),
.cr(1'b0),
.wr(do_wr),
.to(tocnt[9]),
.taghit(ch5_taghit),
.resv_ch(resv_ch),
.resv_adr(resv_adr),
.ack(acki5),
.pre_ack(pre_ack5)
);
mpmc9_ack_gen #(.N(6)) uackg6
(
.rst(rst_i|mem_ui_rst),
.clk(mem_ui_clk),
.state(state),
.ch(ch),
.cs(cs6),
.adr(adr6xx),
.cr(1'b0),
.wr(do_wr),
.to(tocnt[9]),
.taghit(ch6_taghit),
.resv_ch(resv_ch),
.resv_adr(resv_adr),
.ack(acki6),
.pre_ack(pre_ack6)
);
mpmc9_ack_gen #(.N(7)) uackg7
(
.rst(rst_i|mem_ui_rst),
.clk(mem_ui_clk),
.state(state),
.ch(ch),
.cs(ics7),
.adr(adr7xx),
.cr(cr7xx),
.wr(do_wr),
.to(tocnt[9]),
.taghit(ch7_taghit),
.resv_ch(resv_ch),
.resv_adr(resv_adr),
.ack(acki7),
.pre_ack(pre_ack7)
);
wire ne_data_valid;
edge_det ued1 (.rst(rst_i), .clk(mem_ui_clk), .ce(1'b1), .i(app_rd_data_valid), .pe(), .ne(ne_data_valid), .ee());
mpmc9_state_machine ustmac1
(
.rst(rst_i|mem_ui_rst),
.clk(mem_ui_clk),
.ch(nch),
.acki0(acki0),
.acki1(acki1),
.acki2(acki2),
.acki3(acki3),
.acki4(acki4),
.acki5(acki5),
.acki6(acki6),
.acki7(acki7),
.ch0_taghit(ch0_taghit),
.ch1_taghit(ch1_taghit),
.ch2_taghit(ch2_taghit),
.ch3_taghit(ch3_taghit),
.ch4_taghit(ch4_taghit),
.ch5_taghit(ch5_taghit),
.ch6_taghit(ch6_taghit),
.ch7_taghit(ch7_taghit),
.wdf_rdy(app_wdf_rdy),
.rdy(app_rdy),
.do_wr(do_wr),
.rd_data_valid(app_rd_data_valid),
.num_strips(num_strips),
.req_strip_cnt(req_strip_cnt),
.resp_strip_cnt(resp_strip_cnt),
.to(tocnt[9]),
.cr1(cr1xx),
.cr7(cr7xx),
.adr1(adr1xx),
.adr7(adr7xx),
.resv_ch(resv_ch),
.resv_adr(resv_adr),
.state(state)
);
wire [3:0] prev_state;
mpmc9_to_cnt utoc1
(
.clk(mem_ui_clk),
.state(state),
.prev_state(prev_state),
.to_cnt(tocnt)
);
mpmc9_prev_state upst1
(
.clk(mem_ui_clk),
.state(state),
.prev_state(prev_state)
);
mpmc9_app_en_gen ueng1
(
.clk(mem_ui_clk),
.state(state),
.rdy(app_rdy),
.strip_cnt(req_strip_cnt),
.num_strips(num_strips),
.en(app_en)
);
mpmc9_app_cmd_gen ucg1
(
.clk(mem_ui_clk),
.state(state),
.cmd(app_cmd)
);
mpmc9_app_wdf_wren_gen uwreng1
(
.clk(mem_ui_clk),
.state(state),
.rdy(app_wdf_rdy),
.wren(app_wdf_wren)
);
mpmc9_app_wdf_end_gen uwendg1
(
.clk(mem_ui_clk),
.state(state),
.rdy(app_wdf_rdy),
.wend(app_wdf_end)
);
mpmc9_req_strip_cnt ursc1
(
.clk(mem_ui_clk),
.state(state),
.wdf_rdy(app_wdf_rdy),
.rdy(app_rdy),
.num_strips(num_strips),
.strip_cnt(req_strip_cnt)
);
mpmc9_resp_strip_cnt urespsc1
(
.clk(mem_ui_clk),
.state(state),
.valid(app_rd_data_valid),
.num_strips(num_strips),
.strip_cnt(resp_strip_cnt)
);
mpmc9_do_wr udowr0
(
.we(we0xx),
.cr(1'b0),
.adr(adr0xx),
.resv_ch(resv_ch),
.resv_adr(resv_adr),
.do_wr(do_wr0)
);
mpmc9_do_wr udowr1
(
.we(we1xx),
.cr(cr1xx),
.adr(adr1xx),
.resv_ch(resv_ch),
.resv_adr(resv_adr),
.do_wr(do_wr1)
);
mpmc9_do_wr udowr2
(
.we(we2xx),
.cr(1'b0),
.adr(adr2xx),
.resv_ch(resv_ch),
.resv_adr(resv_adr),
.do_wr(do_wr2)
);
mpmc9_do_wr udowr3
(
.we(we3xx),
.cr(1'b0),
.adr(adr3xx),
.resv_ch(resv_ch),
.resv_adr(resv_adr),
.do_wr(do_wr3)
);
mpmc9_do_wr udowr4
(
.we(we4xx),
.cr(1'b0),
.adr(adr4xx),
.resv_ch(resv_ch),
.resv_adr(resv_adr),
.do_wr(do_wr4)
);
mpmc9_do_wr udowr5
(
.we(1'b0),
.cr(1'b0),
.adr(adr5xx),
.resv_ch(resv_ch),
.resv_adr(resv_adr),
.do_wr(do_wr5)
);
mpmc9_do_wr udowr6
(
.we(we6xx),
.cr(1'b0),
.adr(adr6xx),
.resv_ch(resv_ch),
.resv_adr(resv_adr),
.do_wr(do_wr6)
);
mpmc9_do_wr udowr7
(
.we(we7xx),
.cr(cr7xx),
.adr(adr7xx),
.resv_ch(resv_ch),
.resv_adr(resv_adr),
.do_wr(do_wr7)
);
mpmc9_do_wr_select udws1
(
.clk(mem_ui_clk),
.state(state),
.ch(nch),
.wr0(do_wr0),
.wr1(do_wr1),
.wr2(do_wr2),
.wr3(do_wr3),
.wr4(do_wr4),
.wr5(do_wr5),
.wr6(do_wr6),
.wr7(do_wr7),
.wr(do_wr)
);
// Reservation status bit
mpmc9_resv_bit ursb1
(
.clk(mem_ui_clk),
.state(state),
.cs(cs1xx),
.we(we1xx),
.ack(acki1),
.cr(cr1xx),
.adr(adr1xx),
.resv_ch(resv_ch),
.resv_adr(resv_adr),
.rb(rb1)
);
mpmc9_resv_bit ursb7
(
.clk(mem_ui_clk),
.state(state),
.cs(cs7xx),
.we(we7xx),
.ack(acki7),
.cr(cr7xx),
.adr(adr7xx),
.resv_ch(resv_ch),
.resv_adr(resv_adr),
.rb(rb7)
);
// Managing address reservations
mpmc9_addr_resv_man uarman1
(
.rst(mem_ui_rst),
.clk(mem_ui_clk),
.state(state),
.cs1(cs1xx),
.ack1(acki1),
.we1(we1xx),
.adr1(adr1xx),
.sr1(sr1x),
.cr1(cr1xx),
.ch1_taghit(ch1_taghit),
.cs7(cs7xx),
.ack7(acki7),
.we7(we7xx),
.adr7(adr7xx),
.sr7(sr7x),
.cr7(cr7xx),
.ch7_taghit(ch7_taghit),
.resv_ch(resv_ch),
.resv_adr(resv_adr)
);
endmodule