URL
https://opencores.org/ocsvn/neo430/neo430/trunk
Subversion Repositories neo430
[/] [neo430/] [trunk/] [neo430/] [sw/] [example/] [coremark/] [core_portme.c] - Rev 198
Compare with Previous | Blame | View Log
/* Copyright 2018 Embedded Microprocessor Benchmark Consortium (EEMBC) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Original Author: Shay Gal-on Modified for neo430 by Stephan Nolting */ #include <stdio.h> #include <stdlib.h> #include "coremark.h" #include "core_portme.h" #if VALIDATION_RUN volatile ee_s32 seed1_volatile=0x3415; volatile ee_s32 seed2_volatile=0x3415; volatile ee_s32 seed3_volatile=0x66; #endif #if PERFORMANCE_RUN volatile ee_s32 seed1_volatile=0x0; volatile ee_s32 seed2_volatile=0x0; volatile ee_s32 seed3_volatile=0x66; #endif #if PROFILE_RUN volatile ee_s32 seed1_volatile=0x8; volatile ee_s32 seed2_volatile=0x8; volatile ee_s32 seed3_volatile=0x8; #endif volatile ee_s32 seed4_volatile=ITERATIONS; volatile ee_s32 seed5_volatile=0; /* Porting : Timing functions How to capture time and convert to seconds must be ported to whatever is supported by the platform. e.g. Read value from on board RTC, read value from cpu clock cycles performance counter etc. Sample implementation for standard time.h and windows.h definitions included. */ /* Define : TIMER_RES_DIVIDER Divider to trade off timer resolution and total time that can be measured. Use lower values to increase resolution, but make sure that overflow does not occur. If there are issues with the return value overflowing, increase this value. */ #define NSECS_PER_SEC NEO430_TIMER_F #define CORETIMETYPE clock_t #define GETMYTIME(_t) (*_t=clock()) #define MYTIMEDIFF(fin,ini) ((fin)-(ini)) #define TIMER_RES_DIVIDER 1 #define SAMPLE_TIME_IMPLEMENTATION 1 #define EE_TICKS_PER_SEC (NSECS_PER_SEC / TIMER_RES_DIVIDER) /** Define Host specific (POSIX), or target specific global time variables. */ //static CORETIMETYPE start_time_val, stop_time_val; /* Function : start_time This function will be called right before starting the timed portion of the benchmark. Implementation may be capturing a system timer (as implemented in the example code) or zeroing some system parameters - e.g. setting the cpu clocks cycles to 0. */ void start_time(void) { neo430_timer_run(); //GETMYTIME(&start_time_val ); } /* Function : stop_time This function will be called right after ending the timed portion of the benchmark. Implementation may be capturing a system timer (as implemented in the example code) or other system parameters - e.g. reading the current value of cpu cycles counter. */ void stop_time(void) { neo430_timer_pause(); //GETMYTIME(&stop_time_val ); } /* Function : get_time Return an abstract "ticks" number that signifies time on the system. Actual value returned may be cpu cycles, milliseconds or any other value, as long as it can be converted to seconds by <time_in_secs>. This methodology is taken to accomodate any hardware or simulated platform. The sample implementation returns millisecs by default, and the resolution is controlled by <TIMER_RES_DIVIDER> */ CORE_TICKS get_time(void) { CORE_TICKS elapsed = (CORE_TICKS)neo430_ticks; //CORE_TICKS elapsed=(CORE_TICKS)(MYTIMEDIFF(stop_time_val, start_time_val)); return elapsed; } /* Function : time_in_secs Convert the value returned by get_time to seconds. The <secs_ret> type is used to accomodate systems with no support for floating point. Default implementation implemented by the EE_TICKS_PER_SEC macro above. */ secs_ret time_in_secs(CORE_TICKS ticks) { secs_ret retval=((secs_ret)ticks) / (secs_ret)EE_TICKS_PER_SEC; return retval; } ee_u32 default_num_contexts=1; /* Function : portable_init Target specific initialization code Test for some common mistakes. */ void portable_init(core_portable *p, int *argc, char *argv[]) { // setup neo UART neo430_uart_setup(BAUD_RATE); // baud rate // check if TIMER unit was synthesized, exit if no TIMER is available if (!(SYS_FEATURES & (1<<SYS_TIMER_EN))) { neo430_uart_br_print("ERROR! No TIMER unit synthesized!"); while(1); } // timer IRQ vector IRQVEC_TIMER = (uint16_t)(&timer_irq_handler); neo430_ticks = 0; // setup neo430 timer TMR_CT = (1<<TMR_CT_EN) | // timer enabled (1<<TMR_CT_ARST) | // auto-reset on match (1<<TMR_CT_IRQ) | // interrupt enable (0<<TMR_CT_RUN); // timer not running yet uint16_t timer_thres; if (neo430_timer_config_freq(NEO430_TIMER_F, &timer_thres)) { neo430_printf("NEO430: timer frequency config error!\n"); while(1); } neo430_printf("NEO430: clock speed = %n Hz\n", CLOCKSPEED_32bit); neo430_printf("NEO430: timer IRQs/s = %u\n", (uint16_t)NEO430_TIMER_F); #if USE_NEO430_MUL neo430_printf("NEO430: using NEO430 MULDIV unit for matrix core operations\n"); #endif neo430_printf("NEO430: running coremark (%u iterations). This may take some time...\n\n", (uint16_t)ITERATIONS); // enable global IRQs neo430_eint(); if (sizeof(ee_ptr_int) != sizeof(ee_u8 *)) { ee_printf("ERROR! Please define ee_ptr_int to a type that holds a pointer!\n"); } if (sizeof(ee_u32) != 4) { ee_printf("ERROR! Please define ee_u32 to a 32b unsigned type!\n"); } p->portable_id=1; } /* Function : portable_fini Target specific final code */ void portable_fini(core_portable *p) { p->portable_id=0; } /* ------------------------------------------------------------ * INFO Timer interrupt handler * ------------------------------------------------------------ */ void __attribute__((__interrupt__)) timer_irq_handler(void) { neo430_ticks++; }