URL
https://opencores.org/ocsvn/neorv32/neorv32/trunk
Subversion Repositories neorv32
[/] [neorv32/] [trunk/] [rtl/] [core/] [neorv32_cfs.vhd] - Rev 56
Go to most recent revision | Compare with Previous | Blame | View Log
-- ################################################################################################# -- # << NEORV32 - Custom Functions Subsystem (CFS) >> # -- # ********************************************************************************************* # -- # For tightly-coupled custom co-processors. Provides 32x32-bit memory-mapped registers. # -- # This is just an "example/illustrating template". Modify this file to implement your custom # -- # design logic. # -- # ********************************************************************************************* # -- # BSD 3-Clause License # -- # # -- # Copyright (c) 2021, Stephan Nolting. All rights reserved. # -- # # -- # Redistribution and use in source and binary forms, with or without modification, are # -- # permitted provided that the following conditions are met: # -- # # -- # 1. Redistributions of source code must retain the above copyright notice, this list of # -- # conditions and the following disclaimer. # -- # # -- # 2. Redistributions in binary form must reproduce the above copyright notice, this list of # -- # conditions and the following disclaimer in the documentation and/or other materials # -- # provided with the distribution. # -- # # -- # 3. Neither the name of the copyright holder nor the names of its contributors may be used to # -- # endorse or promote products derived from this software without specific prior written # -- # permission. # -- # # -- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS # -- # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # -- # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # -- # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # -- # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # -- # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED # -- # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # -- # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # -- # OF THE POSSIBILITY OF SUCH DAMAGE. # -- # ********************************************************************************************* # -- # The NEORV32 Processor - https://github.com/stnolting/neorv32 (c) Stephan Nolting # -- ################################################################################################# library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library neorv32; use neorv32.neorv32_package.all; entity neorv32_cfs is generic ( CFS_CONFIG : std_ulogic_vector(31 downto 0); -- custom CFS configuration generic CFS_IN_SIZE : positive := 32; -- size of CFS input conduit in bits CFS_OUT_SIZE : positive := 32 -- size of CFS output conduit in bits ); port ( -- host access -- clk_i : in std_ulogic; -- global clock line rstn_i : in std_ulogic; -- global reset line, low-active, use as async addr_i : in std_ulogic_vector(31 downto 0); -- address rden_i : in std_ulogic; -- read enable wren_i : in std_ulogic; -- word write enable data_i : in std_ulogic_vector(31 downto 0); -- data in data_o : out std_ulogic_vector(31 downto 0); -- data out ack_o : out std_ulogic; -- transfer acknowledge -- clock generator -- clkgen_en_o : out std_ulogic; -- enable clock generator clkgen_i : in std_ulogic_vector(07 downto 0); -- "clock" inputs -- CPU state -- sleep_i : in std_ulogic; -- set if cpu is in sleep mode -- interrupt -- irq_o : out std_ulogic; -- interrupt request irq_ack_i : in std_ulogic; -- interrupt acknowledge -- custom io (conduits) -- cfs_in_i : in std_ulogic_vector(CFS_IN_SIZE-1 downto 0); -- custom inputs cfs_out_o : out std_ulogic_vector(CFS_OUT_SIZE-1 downto 0) -- custom outputs ); end neorv32_cfs; architecture neorv32_cfs_rtl of neorv32_cfs is -- IO space: module base address (DO NOT MODIFY!) -- constant hi_abb_c : natural := index_size_f(io_size_c)-1; -- high address boundary bit constant lo_abb_c : natural := index_size_f(cfs_size_c); -- low address boundary bit -- access control -- signal acc_en : std_ulogic; -- module access enable signal addr : std_ulogic_vector(31 downto 0); -- access address signal wren : std_ulogic; -- word write enable signal rden : std_ulogic; -- read enable -- default CFS interface registers -- type cfs_regs_t is array (0 to 3) of std_ulogic_vector(31 downto 0); -- just implement 4 registers for this example signal cfs_reg_wr : cfs_regs_t; -- interface registers for WRITE accesses signal cfs_reg_rd : cfs_regs_t; -- interface registers for READ accesses begin -- Access Control ------------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- -- These assignments are required to check if the CFS is accessed at all. -- DO NOT MODIFY this unless you really know what you are doing. acc_en <= '1' when (addr_i(hi_abb_c downto lo_abb_c) = cfs_base_c(hi_abb_c downto lo_abb_c)) else '0'; addr <= cfs_base_c(31 downto lo_abb_c) & addr_i(lo_abb_c-1 downto 2) & "00"; -- word aligned wren <= acc_en and wren_i; -- full 32-bit word write enable rden <= acc_en and rden_i; -- the read access is always a full 32-bit word wide; if required, the byte/half-word select/masking is done in the CPU -- CFS Generics --------------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- -- In its default version, the CFS provides the configuration generics. single generic: -- CFS_IN_SIZE configures the size (in bits) of the CFS input conduit cfs_in_i -- CFS_OUT_SIZE configures the size (in bits) of the CFS output conduit cfs_out_o -- CFS_CONFIG is a blank 32-bit generic. It is intended as a "generic conduit" to propagate custom configuration flags from the top entity down to this entiy. -- CFS IOs -------------------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- -- By default, the CFS provides two IO signals (cfs_in_i and cfs_out_o) that are available at the processor top entity. -- These are intended as "conduits" to propagate custom signals this entity <=> processor top entity. cfs_out_o <= (others => '0'); -- not used for this minimal example -- Reset System --------------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- -- The CFS can be reset using the global rstn_i signal. This signal should be used as asynchronous reset and is active-low. -- Note that rstn_i can be asserted by an external reset and also by a watchdog-cause reset. -- -- Most default peripheral devices of the NEORV32 do NOT use a dedicated reset at all. Instead, these units are reset by writing ZERO -- to a specific "control register" located right at the beginning of the devices's address space (so this register is cleared at first). -- The crt0 start-up code write ZERO to every single address in the processor's IO space - including the CFS. -- Make sure that this clearing does not cause any unintended actions in the CFS. -- Clock System --------------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- -- The processor top unit implements a clock generator providing 8 "derived clocks" -- Actually, these signals should not be used as direct clock signals, but as *clock enable* signals. -- clkgen_i is always synchronous to the main system clock (clk_i). -- -- The following clock divider rates are available: -- clkgen_i(clk_div2_c) -> MAIN_CLK/2 -- clkgen_i(clk_div4_c) -> MAIN_CLK/4 -- clkgen_i(clk_div8_c) -> MAIN_CLK/8 -- clkgen_i(clk_div64_c) -> MAIN_CLK/64 -- clkgen_i(clk_div128_c) -> MAIN_CLK/128 -- clkgen_i(clk_div1024_c) -> MAIN_CLK/1024 -- clkgen_i(clk_div2048_c) -> MAIN_CLK/2048 -- clkgen_i(clk_div4096_c) -> MAIN_CLK/4096 -- -- For instance, if you want to drive a clock process at MAIN_CLK/8 clock speed you can use the following construct: -- -- if (rstn_i = '0') then -- async and low-active reset (if required at all) -- ... -- elsif rising_edge(clk_i) then -- always use the main clock for all clock processes! -- if (clkgen_i(clk_div8_c) = '1') then -- the div8 "clock" is actually a clock enable -- ... -- end if; -- end if; -- -- The clkgen_i input clocks are available when at least one IO/peripheral device (for example the UART) requires the clocks generated by the -- clock generator. The CFS can enable the clock generator by itself by setting the clkgen_en_o signal high. -- The CFS cannot ensure to deactive the clock generator by setting the clkgen_en_o signal low as other peripherals might still keep the generator activated. -- Make sure to deactivate the CFS's clkgen_en_o if no clocks are required in here to reduce dynamic power consumption. clkgen_en_o <= '0'; -- not used for this minimal example -- Further Power Optimization ------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- -- The CFS can decide to go into low-power mode (by disabling all switching activity) when the CPU enters sleep mode. -- The sleep_i signal is high when the CPU is in sleep mode. Any interrupt including the CFS's irq_o interrupt request signal -- will wake up the CPU again. -- Interrupt ------------------------------------------------------------------------------ -- ------------------------------------------------------------------------------------------- -- The CFS features a single interrupt signal. This interrupt is connected to the CPU's "fast interrupt" channel 1. -- Note that this fast interrupt channel is shared with the GPIO pin-change interrupt. Make sure to disable the GPIO's pin-change interrupt -- via the according control register if you want to use this interrupt exclusively for the CFS. -- -- The interrupt is single-shot. Setting the irq_o signal high for one cycle will generate an interrupt request. -- The interrupt is acknowledged by the CPU via the one-shot irq_ack_i signal indicating that the according interrupt handler is starting. irq_o <= '0'; -- not used for this minimal example -- Read/Write Access ---------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- -- Here we are reading/writing from/to the interface registers of the module. Please note that the peripheral/IO -- modules of the NEORV32 can only be written in full word mode (32-bit). Any other write access (half-word or byte) -- will trigger a store bus access fault exception. -- -- The CFS provides up to 32 memory-mapped 32-bit interface register. For instance, these could be used to provide -- a <control register> for global control of the unit, a <data register> for reading/writing from/to a data FIFO, a <command register> -- for issueing commands and a <status register> for status information. -- -- Following the interface protocol, each read or write access has to be acknowledged in the following cycle using the ack_o signal (or even later -- if the module needs additional time; the maximumx latency until an unacknwoledged access will trigger a bus exception is defined via the package's -- gloabl "bus_timeout_c" constant). If no ACK is generated, the bus access will time out and cause a store bus access fault exception. -- Host access: Read and write access to the interface registers + bus transfer acknowledge. -- This example only implements four physical r/w register (the four lowest CF register). The remaining addresses of the CFS are not -- associated with any writable or readable register - an access to those is simply ignored but still acknowledged. host_access: process(clk_i) begin if rising_edge(clk_i) then -- synchronous interface for reads and writes -- transfer/access acknowledge -- ack_o <= rden or wren; -- default: required for the CPU to check the CFS is answering a bus read OR write request; all r/w accesses (to any cfs_reg) will succeed -- ack_o <= rden; -- use this construct if your CFS is read-only -- ack_o <= wren; -- use this construct if your CFS is write-only -- ack_o <= ... -- or define the ACK by yourself (example: some registers are read-only, some others can only be written, ...) -- write access -- for i in 0 to 3 loop if (wren = '1') then -- word-wide write-access only! case addr is -- make sure to use the internal 'addr' signal for the read/write interface when cfs_reg0_addr_c => cfs_reg_wr(0) <= data_i; -- for example: control register when cfs_reg1_addr_c => cfs_reg_wr(1) <= data_i; -- for example: data in/out fifo when cfs_reg2_addr_c => cfs_reg_wr(2) <= data_i; -- for example: command fifo when cfs_reg3_addr_c => cfs_reg_wr(3) <= data_i; -- for example: status register when others => NULL; end case; end if; end loop; -- i -- read access -- data_o <= (others => '0'); -- the output has to be zero if there is no actual read access if (rden = '1') then -- the read access is always a full 32-bit word wide; if required, the byte/half-word select/masking is done in the CPU case addr is -- make sure to use the internal 'addr' signal for the read/write interface when cfs_reg0_addr_c => data_o <= cfs_reg_rd(0); when cfs_reg1_addr_c => data_o <= cfs_reg_rd(1); when cfs_reg2_addr_c => data_o <= cfs_reg_rd(2); when cfs_reg3_addr_c => data_o <= cfs_reg_rd(3); when others => data_o <= (others => '0'); -- the remaining registers are not implemented and will read as zero end case; end if; end if; end process host_access; -- CFS Function Core ---------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- -- This is where the actual functionality can be implemented. -- In this example we are just implementing four r/w registers that invert any value written to them. cfs_core: process(cfs_reg_wr) begin cfs_reg_rd(0) <= not cfs_reg_wr(0); -- just invert the written value cfs_reg_rd(1) <= not cfs_reg_wr(1); cfs_reg_rd(2) <= not cfs_reg_wr(2); cfs_reg_rd(3) <= not cfs_reg_wr(3); end process cfs_core; end neorv32_cfs_rtl;
Go to most recent revision | Compare with Previous | Blame | View Log