URL
https://opencores.org/ocsvn/neorv32/neorv32/trunk
Subversion Repositories neorv32
[/] [neorv32/] [trunk/] [rtl/] [core/] [neorv32_cpu_control.vhd] - Rev 73
Go to most recent revision | Compare with Previous | Blame | View Log
-- ################################################################################################# -- # << NEORV32 - CPU Operations Control Unit >> # -- # ********************************************************************************************* # -- # CPU operations are controlled by several "engines" (modules). These engines operate in # -- # parallel to implement a simple pipeline: # -- # + Fetch engine: Fetches 32-bit chunks of instruction words # -- # + Issue engine: Decodes compressed instructions, aligns and queues instruction words # -- # + Execute engine: Multi-cycle execution of instructions (generate control signals) # -- # + Trap engine: Handles interrupts and exceptions # -- # + CSR module: Read/write access to control and status registers # -- # + Debug module: CPU debug mode handling (on-chip debugger) # -- # + Trigger module: Hardware-assisted breakpoints (on-chip debugger) # -- # # -- # NOTE: If <dedicated_reset_c> = true then <def_rst_val_c> evaluates to '-'. Registers that # -- # reset to <def_rst_val_c> do NOT actually have a real reset by default and have to be # -- # explicitly initialized by software! This is only used for "uncritical" registers. Many # -- # of them will be initialized by the default crt0 start-up code. # -- # ********************************************************************************************* # -- # BSD 3-Clause License # -- # # -- # Copyright (c) 2022, Stephan Nolting. All rights reserved. # -- # # -- # Redistribution and use in source and binary forms, with or without modification, are # -- # permitted provided that the following conditions are met: # -- # # -- # 1. Redistributions of source code must retain the above copyright notice, this list of # -- # conditions and the following disclaimer. # -- # # -- # 2. Redistributions in binary form must reproduce the above copyright notice, this list of # -- # conditions and the following disclaimer in the documentation and/or other materials # -- # provided with the distribution. # -- # # -- # 3. Neither the name of the copyright holder nor the names of its contributors may be used to # -- # endorse or promote products derived from this software without specific prior written # -- # permission. # -- # # -- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS # -- # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # -- # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # -- # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # -- # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # -- # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED # -- # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # -- # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # -- # OF THE POSSIBILITY OF SUCH DAMAGE. # -- # ********************************************************************************************* # -- # The NEORV32 Processor - https://github.com/stnolting/neorv32 (c) Stephan Nolting # -- ################################################################################################# library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library neorv32; use neorv32.neorv32_package.all; entity neorv32_cpu_control is generic ( -- General -- HW_THREAD_ID : natural; -- hardware thread id (32-bit) CPU_BOOT_ADDR : std_ulogic_vector(31 downto 0); -- cpu boot address CPU_DEBUG_ADDR : std_ulogic_vector(31 downto 0); -- cpu debug mode start address -- RISC-V CPU Extensions -- CPU_EXTENSION_RISCV_A : boolean; -- implement atomic extension? CPU_EXTENSION_RISCV_B : boolean; -- implement bit-manipulation extension? CPU_EXTENSION_RISCV_C : boolean; -- implement compressed extension? CPU_EXTENSION_RISCV_E : boolean; -- implement embedded RF extension? CPU_EXTENSION_RISCV_M : boolean; -- implement mul/div extension? CPU_EXTENSION_RISCV_U : boolean; -- implement user mode extension? CPU_EXTENSION_RISCV_Zfinx : boolean; -- implement 32-bit floating-point extension (using INT reg!) CPU_EXTENSION_RISCV_Zicsr : boolean; -- implement CSR system? CPU_EXTENSION_RISCV_Zicntr : boolean; -- implement base counters? CPU_EXTENSION_RISCV_Zihpm : boolean; -- implement hardware performance monitors? CPU_EXTENSION_RISCV_Zifencei : boolean; -- implement instruction stream sync.? CPU_EXTENSION_RISCV_Zmmul : boolean; -- implement multiply-only M sub-extension? CPU_EXTENSION_RISCV_Zxcfu : boolean; -- implement custom (instr.) functions unit? CPU_EXTENSION_RISCV_DEBUG : boolean; -- implement CPU debug mode? -- Tuning Options -- FAST_MUL_EN : boolean; -- use DSPs for M extension's multiplier FAST_SHIFT_EN : boolean; -- use barrel shifter for shift operations CPU_CNT_WIDTH : natural; -- total width of CPU cycle and instret counters (0..64) CPU_IPB_ENTRIES : natural; -- entries is instruction prefetch buffer, has to be a power of 2 -- Physical memory protection (PMP) -- PMP_NUM_REGIONS : natural; -- number of regions (0..16) PMP_MIN_GRANULARITY : natural; -- minimal region granularity in bytes, has to be a power of 2, min 4 bytes -- Hardware Performance Monitors (HPM) -- HPM_NUM_CNTS : natural; -- number of implemented HPM counters (0..29) HPM_CNT_WIDTH : natural -- total size of HPM counters (0..64) ); port ( -- global control -- clk_i : in std_ulogic; -- global clock, rising edge rstn_i : in std_ulogic; -- global reset, low-active, async ctrl_o : out std_ulogic_vector(ctrl_width_c-1 downto 0); -- main control bus -- status input -- alu_idone_i : in std_ulogic; -- ALU iterative operation done bus_i_wait_i : in std_ulogic; -- wait for bus bus_d_wait_i : in std_ulogic; -- wait for bus excl_state_i : in std_ulogic; -- atomic/exclusive access lock status -- data input -- instr_i : in std_ulogic_vector(data_width_c-1 downto 0); -- instruction cmp_i : in std_ulogic_vector(1 downto 0); -- comparator status alu_add_i : in std_ulogic_vector(data_width_c-1 downto 0); -- ALU address result rs1_i : in std_ulogic_vector(data_width_c-1 downto 0); -- rf source 1 -- data output -- imm_o : out std_ulogic_vector(data_width_c-1 downto 0); -- immediate fetch_pc_o : out std_ulogic_vector(data_width_c-1 downto 0); -- PC for instruction fetch curr_pc_o : out std_ulogic_vector(data_width_c-1 downto 0); -- current PC (corresponding to current instruction) next_pc_o : out std_ulogic_vector(data_width_c-1 downto 0); -- next PC (corresponding to next instruction) csr_rdata_o : out std_ulogic_vector(data_width_c-1 downto 0); -- CSR read data -- FPU interface -- fpu_flags_i : in std_ulogic_vector(04 downto 0); -- exception flags -- debug mode (halt) request -- db_halt_req_i : in std_ulogic; -- interrupts (risc-v compliant) -- msw_irq_i : in std_ulogic; -- machine software interrupt mext_irq_i : in std_ulogic; -- machine external interrupt mtime_irq_i : in std_ulogic; -- machine timer interrupt -- fast interrupts (custom) -- firq_i : in std_ulogic_vector(15 downto 0); -- system time input from MTIME -- time_i : in std_ulogic_vector(63 downto 0); -- current system time -- physical memory protection -- pmp_addr_o : out pmp_addr_if_t; -- addresses pmp_ctrl_o : out pmp_ctrl_if_t; -- configs -- bus access exceptions -- mar_i : in std_ulogic_vector(data_width_c-1 downto 0); -- memory address register ma_instr_i : in std_ulogic; -- misaligned instruction address ma_load_i : in std_ulogic; -- misaligned load data address ma_store_i : in std_ulogic; -- misaligned store data address be_instr_i : in std_ulogic; -- bus error on instruction access be_load_i : in std_ulogic; -- bus error on load data access be_store_i : in std_ulogic -- bus error on store data access ); end neorv32_cpu_control; architecture neorv32_cpu_control_rtl of neorv32_cpu_control is -- CPU core counter ([m]cycle, [m]instret) width - high/low parts -- constant cpu_cnt_lo_width_c : natural := natural(cond_sel_int_f(boolean(CPU_CNT_WIDTH < 32), CPU_CNT_WIDTH, 32)); constant cpu_cnt_hi_width_c : natural := natural(cond_sel_int_f(boolean(CPU_CNT_WIDTH > 32), CPU_CNT_WIDTH-32, 0)); -- HPM counter width - high/low parts -- constant hpm_cnt_lo_width_c : natural := natural(cond_sel_int_f(boolean(HPM_CNT_WIDTH < 32), HPM_CNT_WIDTH, 32)); constant hpm_cnt_hi_width_c : natural := natural(cond_sel_int_f(boolean(HPM_CNT_WIDTH > 32), HPM_CNT_WIDTH-32, 0)); -- instruction fetch engine -- type fetch_engine_state_t is (IFETCH_REQUEST, IFETCH_ISSUE); type fetch_engine_t is record state : fetch_engine_state_t; state_nxt : fetch_engine_state_t; state_prev : fetch_engine_state_t; restart : std_ulogic; restart_nxt : std_ulogic; pc : std_ulogic_vector(data_width_c-1 downto 0); pc_nxt : std_ulogic_vector(data_width_c-1 downto 0); reset : std_ulogic; bus_ir : std_ulogic; end record; signal fetch_engine : fetch_engine_t; -- instruction prefetch buffer (FIFO) interface -- type ipb_t is record wdata : std_ulogic_vector(2+31 downto 0); -- write status (bus_error, align_error) + 32-bit instruction data we : std_ulogic; -- trigger write free : std_ulogic; -- free entry available? clear : std_ulogic; -- clear all entries -- rdata : std_ulogic_vector(2+31 downto 0); -- read data: status (bus_error, align_error) + 32-bit instruction data re : std_ulogic; -- read enable avail : std_ulogic; -- data available? end record; signal ipb : ipb_t; -- pre-decoder -- signal ci_instr16 : std_ulogic_vector(15 downto 0); signal ci_instr32 : std_ulogic_vector(31 downto 0); signal ci_illegal : std_ulogic; -- instruction issue engine -- type issue_engine_t is record realign : std_ulogic; realign_nxt : std_ulogic; align : std_ulogic; align_nxt : std_ulogic; buf : std_ulogic_vector(2+15 downto 0); buf_nxt : std_ulogic_vector(2+15 downto 0); end record; signal issue_engine : issue_engine_t; -- instruction issue interface -- type cmd_issue_t is record data : std_ulogic_vector(35 downto 0); -- 4-bit status + 32-bit instruction valid : std_ulogic; -- data word is valid when set end record; signal cmd_issue : cmd_issue_t; -- instruction decoding helper logic -- type decode_aux_t is record is_a_lr : std_ulogic; is_a_sc : std_ulogic; is_f_op : std_ulogic; is_m_mul : std_ulogic; is_m_div : std_ulogic; is_b_imm : std_ulogic; is_b_reg : std_ulogic; rs1_zero : std_ulogic; rd_zero : std_ulogic; end record; signal decode_aux : decode_aux_t; -- instruction execution engine -- type execute_engine_state_t is (DISPATCH, TRAP_ENTER, TRAP_EXIT, TRAP_EXECUTE, EXECUTE, ALU_WAIT, BRANCH, LOADSTORE_0, LOADSTORE_1, LOADSTORE_2, SYS_ENV, CSR_ACCESS); type execute_engine_t is record state : execute_engine_state_t; state_nxt : execute_engine_state_t; state_prev : execute_engine_state_t; -- i_reg : std_ulogic_vector(31 downto 0); i_reg_nxt : std_ulogic_vector(31 downto 0); i_reg_last : std_ulogic_vector(31 downto 0); -- last executed instruction -- is_ci : std_ulogic; -- current instruction is de-compressed instruction is_ci_nxt : std_ulogic; is_ici : std_ulogic; -- current instruction is illegal de-compressed instruction is_ici_nxt : std_ulogic; -- branch_taken : std_ulogic; -- branch condition fulfilled pc : std_ulogic_vector(data_width_c-1 downto 0); -- actual PC, corresponding to current executed instruction pc_mux_sel : std_ulogic; -- source select for PC update pc_we : std_ulogic; -- PC update enabled next_pc : std_ulogic_vector(data_width_c-1 downto 0); -- next PC, corresponding to next instruction to be executed next_pc_inc : std_ulogic_vector(data_width_c-1 downto 0); -- increment to get next PC pc_last : std_ulogic_vector(data_width_c-1 downto 0); -- PC of last executed instruction -- sleep : std_ulogic; -- CPU in sleep mode sleep_nxt : std_ulogic; branched : std_ulogic; -- instruction fetch was reset branched_nxt : std_ulogic; end record; signal execute_engine : execute_engine_t; -- trap controller -- type trap_ctrl_t is record exc_buf : std_ulogic_vector(exc_width_c-1 downto 0); exc_fire : std_ulogic; -- set if there is a valid source in the exception buffer irq_buf : std_ulogic_vector(irq_width_c-1 downto 0); irq_fire : std_ulogic; -- set if there is a valid source in the interrupt buffer cause : std_ulogic_vector(6 downto 0); -- trap ID for mcause CSR cause_nxt : std_ulogic_vector(6 downto 0); db_irq_fire : std_ulogic; -- set if there is a valid IRQ source in the "enter debug mode" trap buffer db_irq_en : std_ulogic; -- set if IRQs are allowed in debug mode -- env_start : std_ulogic; -- start trap handler env env_start_ack : std_ulogic; -- start of trap handler acknowledged env_end : std_ulogic; -- end trap handler env -- instr_be : std_ulogic; -- instruction fetch bus error instr_ma : std_ulogic; -- instruction fetch misaligned address instr_il : std_ulogic; -- illegal instruction env_call : std_ulogic; -- ecall instruction break_point : std_ulogic; -- ebreak instruction end record; signal trap_ctrl : trap_ctrl_t; -- CPU main control bus -- signal ctrl_nxt, ctrl : std_ulogic_vector(ctrl_width_c-1 downto 0); -- RISC-V control and status registers (CSRs) -- type pmpcfg_t is array (0 to 15) of std_ulogic_vector(7 downto 0); type pmpaddr_t is array (0 to PMP_NUM_REGIONS-1) of std_ulogic_vector(data_width_c-3 downto index_size_f(PMP_MIN_GRANULARITY)-2); type mhpmevent_t is array (0 to HPM_NUM_CNTS-1) of std_ulogic_vector(hpmcnt_event_size_c-1 downto 0); type mhpmevent_rd_t is array (0 to 28) of std_ulogic_vector(data_width_c-1 downto 0); type mhpmcnt_t is array (0 to HPM_NUM_CNTS-1) of std_ulogic_vector(data_width_c-1 downto 0); type mhpmcnt_nxt_t is array (0 to HPM_NUM_CNTS-1) of std_ulogic_vector(data_width_c downto 0); type mhpmcnt_ovfl_t is array (0 to HPM_NUM_CNTS-1) of std_ulogic_vector(0 downto 0); type mhpmcnt_rd_t is array (0 to 29) of std_ulogic_vector(data_width_c-1 downto 0); type csr_t is record addr : std_ulogic_vector(11 downto 0); -- csr address we : std_ulogic; -- csr write enable we_nxt : std_ulogic; wdata : std_ulogic_vector(data_width_c-1 downto 0); -- csr write data rdata : std_ulogic_vector(data_width_c-1 downto 0); -- csr read data -- mstatus_mie : std_ulogic; -- mstatus.MIE: global IRQ enable (R/W) mstatus_mpie : std_ulogic; -- mstatus.MPIE: previous global IRQ enable (R/W) mstatus_mpp : std_ulogic; -- mstatus.MPP: machine previous privilege mode mstatus_tw : std_ulogic; -- mstatus.TW: do not allow user mode to execute WFI instruction when set -- mie_msie : std_ulogic; -- mie.MSIE: machine software interrupt enable (R/W) mie_meie : std_ulogic; -- mie.MEIE: machine external interrupt enable (R/W) mie_mtie : std_ulogic; -- mie.MEIE: machine timer interrupt enable (R/W) mie_firqe : std_ulogic_vector(15 downto 0); -- mie.firq*e: fast interrupt enabled (R/W) -- mip_firq_nclr : std_ulogic_vector(15 downto 0); -- clear pending FIRQ (active-low) -- mcounteren_cy : std_ulogic; -- mcounteren.cy: allow cycle[h] access from user-mode mcounteren_tm : std_ulogic; -- mcounteren.tm: allow time[h] access from user-mode mcounteren_ir : std_ulogic; -- mcounteren.ir: allow instret[h] access from user-mode -- mcountinhibit_cy : std_ulogic; -- mcounterinhibit.cy: enable auto-increment for [m]cycle[h] mcountinhibit_ir : std_ulogic; -- mcounterinhibit.ir: enable auto-increment for [m]instret[h] mcountinhibit_hpm : std_ulogic_vector(HPM_NUM_CNTS-1 downto 0); -- mcounterinhibit.hpm3: enable auto-increment for mhpmcounterx[h] -- privilege : std_ulogic; -- current privilege mode privilege_eff : std_ulogic; -- current *effective* privilege mode -- mepc : std_ulogic_vector(data_width_c-1 downto 0); -- mepc: machine exception pc (R/W) mcause : std_ulogic_vector(5 downto 0); -- mcause: machine trap cause (R/W) mtvec : std_ulogic_vector(data_width_c-1 downto 0); -- mtvec: machine trap-handler base address (R/W), bit 1:0 == 00 mtval : std_ulogic_vector(data_width_c-1 downto 0); -- mtval: machine bad address or instruction (R/W) -- mhpmevent : mhpmevent_t; -- mhpmevent*: machine performance-monitoring event selector (R/W) mhpmevent_rd : mhpmevent_rd_t; -- read data -- mscratch : std_ulogic_vector(data_width_c-1 downto 0); -- mscratch: scratch register (R/W) -- mcycle : std_ulogic_vector(data_width_c-1 downto 0); -- mcycle (R/W) mcycle_nxt : std_ulogic_vector(data_width_c downto 0); mcycle_ovfl : std_ulogic_vector(00 downto 0); -- counter low-to-high-word overflow mcycleh : std_ulogic_vector(data_width_c-1 downto 0); -- mcycleh (R/W) minstret : std_ulogic_vector(data_width_c-1 downto 0); -- minstret (R/W) minstret_nxt : std_ulogic_vector(data_width_c downto 0); minstret_ovfl : std_ulogic_vector(00 downto 0); -- counter low-to-high-word overflow minstreth : std_ulogic_vector(data_width_c-1 downto 0); -- minstreth (R/W) -- mhpmcounter : mhpmcnt_t; -- mhpmcounter* (R/W), plus carry bit mhpmcounter_nxt : mhpmcnt_nxt_t; mhpmcounter_ovfl : mhpmcnt_ovfl_t; -- counter low-to-high-word overflow mhpmcounterh : mhpmcnt_t; -- mhpmcounter*h (R/W) mhpmcounter_rd : mhpmcnt_rd_t; -- mhpmcounter* (R/W): actual read data mhpmcounterh_rd : mhpmcnt_rd_t; -- mhpmcounter*h (R/W): actual read data -- pmpcfg : pmpcfg_t; -- physical memory protection - configuration registers pmpaddr : pmpaddr_t; -- physical memory protection - address registers (bits 33:2 of PHYSICAL address) -- frm : std_ulogic_vector(02 downto 0); -- frm (R/W): FPU rounding mode fflags : std_ulogic_vector(04 downto 0); -- fflags (R/W): FPU exception flags -- dcsr_ebreakm : std_ulogic; -- dcsr.ebreakm (R/W): behavior of ebreak instruction on m-mode dcsr_ebreaku : std_ulogic; -- dcsr.ebreaku (R/W): behavior of ebreak instruction on u-mode dcsr_step : std_ulogic; -- dcsr.step (R/W): single-step mode dcsr_prv : std_ulogic; -- dcsr.prv (R/W): current privilege level when entering debug mode dcsr_cause : std_ulogic_vector(02 downto 0); -- dcsr.cause (R/-): why was debug mode entered dcsr_rd : std_ulogic_vector(data_width_c-1 downto 0); -- dcsr (R/(W)): debug mode control and status register dpc : std_ulogic_vector(data_width_c-1 downto 0); -- dpc (R/W): debug mode program counter dscratch0 : std_ulogic_vector(data_width_c-1 downto 0); -- dscratch0 (R/W): debug mode scratch register 0 -- tdata1_exe : std_ulogic; -- enable (match) trigger tdata1_rd : std_ulogic_vector(data_width_c-1 downto 0); -- tdata1 (R/(W)): trigger register read-back tdata2 : std_ulogic_vector(data_width_c-1 downto 0); -- tdata2 (R/W): address-match register end record; signal csr : csr_t; -- debug mode controller -- type debug_ctrl_state_t is (DEBUG_OFFLINE, DEBUG_PENDING, DEBUG_ONLINE, DEBUG_EXIT); type debug_ctrl_t is record state : debug_ctrl_state_t; -- decoded state -- running : std_ulogic; -- debug mode active pending : std_ulogic; -- waiting to start debug mode -- entering triggers -- trig_hw : std_ulogic; -- hardware trigger trig_break : std_ulogic; -- ebreak instruction trig_halt : std_ulogic; -- external request trig_step : std_ulogic; -- single-stepping mode -- leave debug mode -- dret : std_ulogic; -- executed DRET instruction -- misc -- ext_halt_req : std_ulogic; end record; signal debug_ctrl : debug_ctrl_t; -- (hpm) counter events -- signal cnt_event : std_ulogic_vector(hpmcnt_event_size_c-1 downto 0); signal hpmcnt_trigger : std_ulogic_vector(HPM_NUM_CNTS-1 downto 0); -- illegal instruction check -- signal illegal_opcode_lsbs : std_ulogic; -- opcode != rv32 signal illegal_instruction : std_ulogic; signal illegal_register : std_ulogic; -- illegal register (>x15) - E-extension signal illegal_compressed : std_ulogic; -- illegal compressed instruction - C-extension -- access (privilege) check -- signal csr_acc_valid : std_ulogic; -- valid CSR access (implemented and valid access rights) -- hardware trigger module -- signal hw_trigger_fire : std_ulogic; begin -- **************************************************************************************************************************** -- Instruction Fetch (always fetch 32-bit-aligned 32-bit chunks of data) -- **************************************************************************************************************************** -- Fetch Engine FSM Sync ------------------------------------------------------------------ -- ------------------------------------------------------------------------------------------- fetch_engine_fsm_sync: process(rstn_i, clk_i) begin if (rstn_i = '0') then fetch_engine.state <= IFETCH_REQUEST; fetch_engine.state_prev <= IFETCH_REQUEST; fetch_engine.restart <= '1'; fetch_engine.pc <= (others => def_rst_val_c); elsif rising_edge(clk_i) then fetch_engine.state <= fetch_engine.state_nxt; fetch_engine.state_prev <= fetch_engine.state; fetch_engine.restart <= fetch_engine.restart_nxt or fetch_engine.reset; fetch_engine.pc <= fetch_engine.pc_nxt; end if; end process fetch_engine_fsm_sync; -- PC output -- fetch_pc_o <= fetch_engine.pc(data_width_c-1 downto 1) & '0'; -- half-word aligned -- Fetch Engine FSM Comb ------------------------------------------------------------------ -- ------------------------------------------------------------------------------------------- fetch_engine_fsm_comb: process(fetch_engine, execute_engine, ipb, instr_i, bus_i_wait_i, be_instr_i, ma_instr_i) begin -- arbiter defaults -- fetch_engine.bus_ir <= '0'; fetch_engine.state_nxt <= fetch_engine.state; fetch_engine.pc_nxt <= fetch_engine.pc; fetch_engine.restart_nxt <= fetch_engine.restart; -- instruction prefetch buffer defaults -- ipb.we <= '0'; ipb.wdata <= be_instr_i & ma_instr_i & instr_i(31 downto 0); -- store exception info and instruction word -- state machine -- if (fetch_engine.state = IFETCH_REQUEST) then -- IFETCH_REQUEST: request new 32-bit-aligned instruction word -- ------------------------------------------------------------ if (fetch_engine.restart = '1') then -- reset request fetch_engine.pc_nxt <= execute_engine.pc(data_width_c-1 downto 1) & '0'; -- initialize with "real" application PC elsif (ipb.free = '1') then -- free entry in buffer fetch_engine.bus_ir <= '1'; -- instruction fetch request fetch_engine.state_nxt <= IFETCH_ISSUE; end if; fetch_engine.restart_nxt <= '0'; else -- IFETCH_ISSUE: store instruction data to prefetch buffer -- ------------------------------------------------------------ if (bus_i_wait_i = '0') or (be_instr_i = '1') or (ma_instr_i = '1') then -- wait for bus response fetch_engine.pc_nxt <= std_ulogic_vector(unsigned(fetch_engine.pc) + 4); ipb.we <= not fetch_engine.restart; -- write to IPB if not being reset fetch_engine.state_nxt <= IFETCH_REQUEST; end if; end if; end process fetch_engine_fsm_comb; -- clear instruction prefetch buffer while being reset -- ipb.clear <= fetch_engine.restart or fetch_engine.reset; -- **************************************************************************************************************************** -- Instruction Prefetch Buffer -- **************************************************************************************************************************** -- Instruction Prefetch Buffer (FIFO) ----------------------------------------------------- -- ------------------------------------------------------------------------------------------- instr_prefetch_buffer: neorv32_fifo generic map ( FIFO_DEPTH => CPU_IPB_ENTRIES, -- number of fifo entries; has to be a power of two; min 1 FIFO_WIDTH => ipb.wdata'length, -- size of data elements in fifo FIFO_RSYNC => false, -- we NEED to read data asynchronously FIFO_SAFE => false -- no safe access required (ensured by FIFO-external control) ) port map ( -- control -- clk_i => clk_i, -- clock, rising edge rstn_i => '1', -- async reset, low-active clear_i => ipb.clear, -- sync reset, high-active level_o => open, half_o => open, -- write port -- wdata_i => ipb.wdata, -- write data we_i => ipb.we, -- write enable free_o => ipb.free, -- at least one entry is free when set -- read port -- re_i => ipb.re, -- read enable rdata_o => ipb.rdata, -- read data avail_o => ipb.avail -- data available when set ); -- **************************************************************************************************************************** -- Instruction Issue (recoding of compressed instructions and 32-bit instruction word construction) -- **************************************************************************************************************************** -- Issue Engine FSM Sync ------------------------------------------------------------------ -- ------------------------------------------------------------------------------------------- issue_engine_fsm_sync: process(rstn_i, clk_i) begin if (rstn_i = '0') then -- always start aligned after reset issue_engine.align <= '0'; issue_engine.realign <= '0'; issue_engine.buf <= (others => def_rst_val_c); elsif rising_edge(clk_i) then if (ipb.clear = '1') then if (CPU_EXTENSION_RISCV_C = true) and (execute_engine.pc(1) = '1') then -- branch to unaligned address? issue_engine.align <= '1'; -- aligned on 16-bit boundary issue_engine.realign <= '1'; else issue_engine.align <= '0'; -- aligned on 32-bit boundary issue_engine.realign <= '0'; end if; else issue_engine.align <= issue_engine.align_nxt; issue_engine.realign <= issue_engine.realign_nxt; end if; issue_engine.buf <= issue_engine.buf_nxt; end if; end process issue_engine_fsm_sync; -- Issue Engine FSM Comb ------------------------------------------------------------------ -- ------------------------------------------------------------------------------------------- issue_engine_fsm_comb: process(issue_engine, ipb, execute_engine, ci_illegal, ci_instr32) begin -- arbiter defaults -- issue_engine.realign_nxt <= issue_engine.realign; issue_engine.align_nxt <= issue_engine.align; issue_engine.buf_nxt <= issue_engine.buf; -- instruction prefetch buffer interface defaults -- ipb.re <= '0'; -- instruction issue interface defaults -- cmd_issue.valid <= '0'; -- construct instruction data -- -- cmd_issue.data = <illegal_compressed_instruction> & <bus_error & alignment_error> & <is_compressed_instrucion> & <32-bit_instruction_word> if (issue_engine.align = '0') or (CPU_EXTENSION_RISCV_C = false) then -- 32-bit aligned if (ipb.rdata(1 downto 0) = "11") or (CPU_EXTENSION_RISCV_C = false) then -- uncompressed cmd_issue.data <= '0' & ipb.rdata(33 downto 32) & '0' & ipb.rdata(31 downto 0); else -- compressed cmd_issue.data <= ci_illegal & ipb.rdata(33 downto 32) & '1' & ci_instr32; end if; else -- not 32-bit aligned if (issue_engine.buf(1 downto 0) = "11") then -- uncompressed cmd_issue.data <= '0' & (ipb.rdata(33 downto 32) or issue_engine.buf(17 downto 16)) & '0' & (ipb.rdata(15 downto 0) & issue_engine.buf(15 downto 0)); else -- compressed cmd_issue.data <= ci_illegal & ipb.rdata(33 downto 32) & '1' & ci_instr32; end if; end if; -- store high half-word - we might need it for an unaligned uncompressed instruction -- if (execute_engine.state = DISPATCH) and (ipb.avail = '1') and (CPU_EXTENSION_RISCV_C = true) then issue_engine.buf_nxt <= ipb.rdata(33 downto 32) & ipb.rdata(31 downto 16); end if; -- state machine -- if (ipb.avail = '1') then -- instruction data available? if (issue_engine.realign = '0') then -- issue instruction if available -- ------------------------------------------------------------ cmd_issue.valid <= '1'; if (issue_engine.align = '0') or (CPU_EXTENSION_RISCV_C = false) then -- begin check in LOW instruction half-word if (execute_engine.state = DISPATCH) then -- ready to issue new command? ipb.re <= '1'; if (ipb.rdata(1 downto 0) /= "11") and (CPU_EXTENSION_RISCV_C = true) then -- compressed issue_engine.align_nxt <= '1'; end if; end if; else -- begin check in HIGH instruction half-word if (execute_engine.state = DISPATCH) then -- ready to issue new command? if (issue_engine.buf(1 downto 0) = "11") then -- uncompressed and unaligned ipb.re <= '1'; else -- compressed - do not read from ipb here! issue_engine.align_nxt <= '0'; end if; end if; end if; else -- re-align input fifo and half-word buffer after a branch to an unaligned address -- ------------------------------------------------------------ ipb.re <= '1'; issue_engine.realign_nxt <= '0'; end if; end if; end process issue_engine_fsm_comb; -- 16-bit instructions: half-word select -- ci_instr16 <= ipb.rdata(15 downto 0) when (issue_engine.align = '0') else issue_engine.buf(15 downto 0); -- Compressed Instructions Recoding ------------------------------------------------------- -- ------------------------------------------------------------------------------------------- neorv32_cpu_decompressor_inst_true: if (CPU_EXTENSION_RISCV_C = true) generate neorv32_cpu_decompressor_inst: neorv32_cpu_decompressor generic map ( FPU_ENABLE => CPU_EXTENSION_RISCV_Zfinx -- floating-point instruction enabled ) port map ( -- instruction input -- ci_instr16_i => ci_instr16, -- compressed instruction input -- instruction output -- ci_illegal_o => ci_illegal, -- is an illegal compressed instruction ci_instr32_o => ci_instr32 -- 32-bit decompressed instruction ); end generate; neorv32_cpu_decompressor_inst_false: if (CPU_EXTENSION_RISCV_C = false) generate ci_instr32 <= (others => '0'); ci_illegal <= '0'; end generate; -- **************************************************************************************************************************** -- Instruction Execution -- **************************************************************************************************************************** -- Immediate Generator -------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- imm_gen: process(clk_i) variable opcode_v : std_ulogic_vector(6 downto 0); begin if rising_edge(clk_i) then -- default: I-immediate: ALU-immediate, loads, jump-and-link with register imm_o(31 downto 11) <= (others => execute_engine.i_reg(31)); -- sign extension imm_o(10 downto 05) <= execute_engine.i_reg(30 downto 25); imm_o(04 downto 01) <= execute_engine.i_reg(24 downto 21); imm_o(00) <= execute_engine.i_reg(20); opcode_v := execute_engine.i_reg(instr_opcode_msb_c downto instr_opcode_lsb_c+2) & "11"; case opcode_v is -- save some bits here, the two LSBs are always "11" for rv32 when opcode_store_c => -- S-immediate: store imm_o(31 downto 11) <= (others => execute_engine.i_reg(31)); -- sign extension imm_o(10 downto 05) <= execute_engine.i_reg(30 downto 25); imm_o(04 downto 01) <= execute_engine.i_reg(11 downto 08); imm_o(00) <= execute_engine.i_reg(07); when opcode_branch_c => -- B-immediate: conditional branches imm_o(31 downto 12) <= (others => execute_engine.i_reg(31)); -- sign extension imm_o(11) <= execute_engine.i_reg(07); imm_o(10 downto 05) <= execute_engine.i_reg(30 downto 25); imm_o(04 downto 01) <= execute_engine.i_reg(11 downto 08); imm_o(00) <= '0'; when opcode_lui_c | opcode_auipc_c => -- U-immediate: lui, auipc imm_o(31 downto 20) <= execute_engine.i_reg(31 downto 20); imm_o(19 downto 12) <= execute_engine.i_reg(19 downto 12); imm_o(11 downto 00) <= (others => '0'); when opcode_jal_c => -- J-immediate: unconditional jumps imm_o(31 downto 20) <= (others => execute_engine.i_reg(31)); -- sign extension imm_o(19 downto 12) <= execute_engine.i_reg(19 downto 12); imm_o(11) <= execute_engine.i_reg(20); imm_o(10 downto 05) <= execute_engine.i_reg(30 downto 25); imm_o(04 downto 01) <= execute_engine.i_reg(24 downto 21); imm_o(00) <= '0'; when opcode_atomic_c => -- atomic memory access and everything else if (CPU_EXTENSION_RISCV_A = true) then imm_o <= (others => '0'); -- effective address is addr = reg + 0 = reg else NULL; -- use default end if; when others => -- I-immediate NULL; -- use default end case; end if; end process imm_gen; -- Branch Condition Check ----------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- branch_check: process(execute_engine.i_reg, cmp_i) begin case execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) is when funct3_beq_c => -- branch if equal execute_engine.branch_taken <= cmp_i(cmp_equal_c); when funct3_bne_c => -- branch if not equal execute_engine.branch_taken <= not cmp_i(cmp_equal_c); when funct3_blt_c | funct3_bltu_c => -- branch if less (signed/unsigned) execute_engine.branch_taken <= cmp_i(cmp_less_c); when others => -- branch if greater or equal (signed/unsigned), invalid funct3 are checked by illegal instr. logic execute_engine.branch_taken <= not cmp_i(cmp_less_c); end case; end process branch_check; -- Execute Engine FSM Sync ---------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- execute_engine_fsm_sync: process(rstn_i, clk_i) begin if (rstn_i = '0') then -- no dedicated reset required -- execute_engine.state_prev <= DISPATCH; -- actual reset value is not relevant execute_engine.i_reg <= (others => def_rst_val_c); execute_engine.is_ci <= def_rst_val_c; execute_engine.is_ici <= def_rst_val_c; execute_engine.i_reg_last <= (others => def_rst_val_c); execute_engine.next_pc <= (others => def_rst_val_c); ctrl <= (others => def_rst_val_c); -- registers that DO require a specific RESET state -- execute_engine.pc <= CPU_BOOT_ADDR(data_width_c-1 downto 2) & "00"; -- 32-bit aligned! execute_engine.pc_last <= CPU_BOOT_ADDR(data_width_c-1 downto 2) & "00"; execute_engine.state <= DISPATCH; execute_engine.sleep <= '0'; execute_engine.branched <= '1'; -- reset is a branch from "somewhere" ctrl(ctrl_bus_rd_c) <= '0'; ctrl(ctrl_bus_wr_c) <= '0'; elsif rising_edge(clk_i) then -- PC update -- if (execute_engine.pc_we = '1') then if (execute_engine.pc_mux_sel = '0') then execute_engine.pc <= execute_engine.next_pc(data_width_c-1 downto 1) & '0'; -- normal (linear) increment OR trap enter/exit else execute_engine.pc <= alu_add_i(data_width_c-1 downto 1) & '0'; -- jump/taken_branch end if; end if; -- execute engine arbiter -- execute_engine.state <= execute_engine.state_nxt; execute_engine.state_prev <= execute_engine.state; execute_engine.sleep <= execute_engine.sleep_nxt; execute_engine.branched <= execute_engine.branched_nxt; execute_engine.i_reg <= execute_engine.i_reg_nxt; execute_engine.is_ci <= execute_engine.is_ci_nxt; execute_engine.is_ici <= execute_engine.is_ici_nxt; -- PC & IR of "last executed" instruction for trap handling -- if (execute_engine.state = EXECUTE) then execute_engine.pc_last <= execute_engine.pc; execute_engine.i_reg_last <= execute_engine.i_reg; end if; -- next PC logic -- case execute_engine.state is when TRAP_ENTER => -- ENTERING trap environment if (trap_ctrl.cause(5) = '1') and (CPU_EXTENSION_RISCV_DEBUG = true) then -- trap cause: debug mode (re-)entry execute_engine.next_pc <= CPU_DEBUG_ADDR; -- debug mode enter; start at "parking loop" <normal_entry> elsif (debug_ctrl.running = '1') and (CPU_EXTENSION_RISCV_DEBUG = true) then -- any other exception INSIDE debug mode execute_engine.next_pc <= std_ulogic_vector(unsigned(CPU_DEBUG_ADDR) + 4); -- start at "parking loop" <exception_entry> else -- normal trapping execute_engine.next_pc <= csr.mtvec(data_width_c-1 downto 1) & '0'; -- trap enter end if; when TRAP_EXIT => -- LEAVING trap environment if (CPU_EXTENSION_RISCV_DEBUG = false) or (debug_ctrl.running = '0') then -- normal end of trap execute_engine.next_pc <= csr.mepc(data_width_c-1 downto 1) & '0'; -- trap exit else -- DEBUG MODE exiting execute_engine.next_pc <= csr.dpc(data_width_c-1 downto 1) & '0'; -- debug mode exit end if; when EXECUTE => -- NORMAL pc increment execute_engine.next_pc <= std_ulogic_vector(unsigned(execute_engine.pc) + unsigned(execute_engine.next_pc_inc)); -- next linear PC when others => NULL; end case; -- main control bus buffer -- ctrl <= ctrl_nxt; end if; end process execute_engine_fsm_sync; -- PC increment for next linear instruction (+2 for compressed instr., +4 otherwise) -- execute_engine.next_pc_inc(data_width_c-1 downto 4) <= (others => '0'); execute_engine.next_pc_inc(3 downto 0) <= x"4" when ((execute_engine.is_ci = '0') or (CPU_EXTENSION_RISCV_C = false)) else x"2"; -- PC output -- curr_pc_o <= execute_engine.pc(data_width_c-1 downto 1) & '0'; -- current PC next_pc_o <= execute_engine.next_pc(data_width_c-1 downto 1) & '0'; -- next PC -- CSR access address -- csr.addr <= execute_engine.i_reg(instr_csr_id_msb_c downto instr_csr_id_lsb_c); -- CPU Control Bus Output ----------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- ctrl_output: process(ctrl, fetch_engine, trap_ctrl, execute_engine, csr, debug_ctrl) begin -- signals from execute engine -- ctrl_o <= ctrl; -- prevent commits if illegal instruction -- ctrl_o(ctrl_rf_wb_en_c) <= ctrl(ctrl_rf_wb_en_c) and (not trap_ctrl.exc_buf(exc_iillegal_c)); ctrl_o(ctrl_bus_rd_c) <= ctrl(ctrl_bus_rd_c) and (not trap_ctrl.exc_buf(exc_iillegal_c)); ctrl_o(ctrl_bus_wr_c) <= ctrl(ctrl_bus_wr_c) and (not trap_ctrl.exc_buf(exc_iillegal_c)); -- current effective privilege level -- ctrl_o(ctrl_priv_mode_c) <= csr.privilege_eff; -- register addresses -- ctrl_o(ctrl_rf_rs1_adr4_c downto ctrl_rf_rs1_adr0_c) <= execute_engine.i_reg(instr_rs1_msb_c downto instr_rs1_lsb_c); ctrl_o(ctrl_rf_rs2_adr4_c downto ctrl_rf_rs2_adr0_c) <= execute_engine.i_reg(instr_rs2_msb_c downto instr_rs2_lsb_c); ctrl_o(ctrl_rf_rd_adr4_c downto ctrl_rf_rd_adr0_c) <= execute_engine.i_reg(instr_rd_msb_c downto instr_rd_lsb_c); -- instruction fetch request -- ctrl_o(ctrl_bus_if_c) <= fetch_engine.bus_ir; -- memory access size / sign -- ctrl_o(ctrl_bus_unsigned_c) <= execute_engine.i_reg(instr_funct3_msb_c); -- unsigned LOAD (LBU, LHU) ctrl_o(ctrl_bus_size_msb_c downto ctrl_bus_size_lsb_c) <= execute_engine.i_reg(instr_funct3_lsb_c+1 downto instr_funct3_lsb_c); -- mem transfer size -- alu.shifter -- ctrl_o(ctrl_alu_shift_dir_c) <= execute_engine.i_reg(instr_funct3_msb_c); -- shift direction (left/right) ctrl_o(ctrl_alu_shift_ar_c) <= execute_engine.i_reg(30); -- is arithmetic shift -- instruction's function blocks (for co-processors) -- ctrl_o(ctrl_ir_opcode7_6_c downto ctrl_ir_opcode7_0_c) <= execute_engine.i_reg(instr_opcode_msb_c downto instr_opcode_lsb_c); ctrl_o(ctrl_ir_funct12_11_c downto ctrl_ir_funct12_0_c) <= execute_engine.i_reg(instr_funct12_msb_c downto instr_funct12_lsb_c); ctrl_o(ctrl_ir_funct3_2_c downto ctrl_ir_funct3_0_c) <= execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c); -- cpu status -- ctrl_o(ctrl_sleep_c) <= execute_engine.sleep; -- cpu is in sleep mode ctrl_o(ctrl_trap_c) <= trap_ctrl.env_start_ack; -- cpu is starting a trap handler ctrl_o(ctrl_debug_running_c) <= debug_ctrl.running; -- cpu is currently in debug mode -- FPU rounding mode -- ctrl_o(ctrl_alu_frm2_c downto ctrl_alu_frm0_c) <= csr.frm; end process ctrl_output; -- Decoding Helper Logic ------------------------------------------------------------------ -- ------------------------------------------------------------------------------------------- decode_helper: process(execute_engine) begin -- defaults -- decode_aux.is_a_lr <= '0'; decode_aux.is_a_sc <= '0'; decode_aux.is_f_op <= '0'; decode_aux.is_m_mul <= '0'; decode_aux.is_m_div <= '0'; decode_aux.is_b_imm <= '0'; decode_aux.is_b_reg <= '0'; decode_aux.rs1_zero <= '0'; decode_aux.rd_zero <= '0'; -- is atomic load-reservate/store-conditional? -- if (CPU_EXTENSION_RISCV_A = true) and (execute_engine.i_reg(instr_opcode_lsb_c+2) = '1') then -- valid atomic sub-opcode decode_aux.is_a_lr <= not execute_engine.i_reg(instr_funct5_lsb_c); decode_aux.is_a_sc <= execute_engine.i_reg(instr_funct5_lsb_c); end if; -- is BITMANIP instruction? -- -- pretty complex as we have to extract this from the ALU/ALUI instruction space -- if (CPU_EXTENSION_RISCV_B = true) then -- BITMANIP implemented at all? -- immediate operation -- if ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0110000") and (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "001") and ( (execute_engine.i_reg(instr_funct12_lsb_c+4 downto instr_funct12_lsb_c) = "00000") or -- CLZ (execute_engine.i_reg(instr_funct12_lsb_c+4 downto instr_funct12_lsb_c) = "00001") or -- CTZ (execute_engine.i_reg(instr_funct12_lsb_c+4 downto instr_funct12_lsb_c) = "00010") or -- CPOP (execute_engine.i_reg(instr_funct12_lsb_c+4 downto instr_funct12_lsb_c) = "00100") or -- SEXT.B (execute_engine.i_reg(instr_funct12_lsb_c+4 downto instr_funct12_lsb_c) = "00101") -- SEXT.H ) ) or ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0110000") and (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "101")) or -- RORI ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0010100") and (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "101") and (execute_engine.i_reg(instr_funct12_lsb_c+4 downto instr_funct12_lsb_c) = "00111")) or -- ORCB ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0110100") and (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "101")) or -- REV8 ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0100100") and (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "001")) or -- BCLRI ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0100100") and (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "101")) or -- BEXTI ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0110100") and (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "001")) or -- BINVI ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0010100") and (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "001")) then -- BSETI decode_aux.is_b_imm <= '1'; end if; -- register operation -- if ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0110000") and (execute_engine.i_reg(instr_funct3_msb_c-1 downto instr_funct3_lsb_c) = "01")) or -- ROR / ROL ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0000101") and (execute_engine.i_reg(instr_funct3_msb_c) = '1')) or -- MIN[U] / MAX[U] ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0000100") and (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "100")) or -- ZEXTH ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0100100") and (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "001")) or -- BCLR ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0100100") and (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "101")) or -- BEXT ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0110100") and (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "001")) or -- BINV ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0010100") and (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "001")) or -- BSET ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0000101") and (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "001")) or -- CLMUL ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0000101") and (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "011")) or -- CLMULH ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0000101") and (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "010")) or -- CLMULR ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0100000") and ( (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "111") or -- ANDN (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "110") or -- ORN (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "100") -- XORN ) ) or ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0010000") and ( (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "010") or -- SH1ADD (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "100") or -- SH2ADD (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "110") -- SH3ADD ) ) then decode_aux.is_b_reg <= '1'; end if; end if; -- floating-point operations (Zfinx) -- if (CPU_EXTENSION_RISCV_Zfinx = true) then -- FPU implemented at all? if ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c+3) = "0000")) or -- FADD.S / FSUB.S ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c+2) = "00010")) or -- FMUL.S ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c+2) = "11100") and (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "001")) or -- FCLASS.S ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c+2) = "00100") and (execute_engine.i_reg(instr_funct3_msb_c) = '0')) or -- FSGNJ[N/X].S ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c+2) = "00101") and (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_msb_c-1) = "00")) or -- FMIN.S / FMAX.S ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c+2) = "10100") and (execute_engine.i_reg(instr_funct3_msb_c) = '0')) or -- FEQ.S / FLT.S / FLE.S ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c+2) = "11010") and (execute_engine.i_reg(instr_funct12_lsb_c+4 downto instr_funct12_lsb_c+1) = "0000")) or -- FCVT.S.W* ((execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c+2) = "11000") and (execute_engine.i_reg(instr_funct12_lsb_c+4 downto instr_funct12_lsb_c+1) = "0000")) then -- FCVT.W*.S decode_aux.is_f_op <= '1'; end if; end if; -- integer MUL (M/Zmmul) / DIV (M) operation -- if (execute_engine.i_reg(instr_opcode_lsb_c+5) = opcode_alu_c(5)) and (execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0000001") then if ((CPU_EXTENSION_RISCV_M = true) or (CPU_EXTENSION_RISCV_Zmmul = true)) and (execute_engine.i_reg(instr_funct3_msb_c) = '0') then decode_aux.is_m_mul <= '1'; end if; if (CPU_EXTENSION_RISCV_M = true) and (execute_engine.i_reg(instr_funct3_msb_c) = '1') then decode_aux.is_m_div <= '1'; end if; end if; -- register/uimm5 checks -- decode_aux.rs1_zero <= not or_reduce_f(execute_engine.i_reg(instr_rs1_msb_c downto instr_rs1_lsb_c)); decode_aux.rd_zero <= not or_reduce_f(execute_engine.i_reg(instr_rd_msb_c downto instr_rd_lsb_c)); end process decode_helper; -- Execute Engine FSM Comb ---------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- execute_engine_fsm_comb: process(execute_engine, debug_ctrl, trap_ctrl, decode_aux, fetch_engine, cmd_issue, csr, ctrl, alu_idone_i, bus_d_wait_i, excl_state_i) variable opcode_v : std_ulogic_vector(6 downto 0); begin -- arbiter defaults -- execute_engine.state_nxt <= execute_engine.state; execute_engine.i_reg_nxt <= execute_engine.i_reg; execute_engine.is_ci_nxt <= execute_engine.is_ci; execute_engine.is_ici_nxt <= '0'; execute_engine.sleep_nxt <= execute_engine.sleep; execute_engine.branched_nxt <= execute_engine.branched; -- execute_engine.pc_mux_sel <= '0'; execute_engine.pc_we <= '0'; -- instruction dispatch -- fetch_engine.reset <= '0'; -- trap environment control -- trap_ctrl.env_start_ack <= '0'; trap_ctrl.env_end <= '0'; -- leave debug mode -- debug_ctrl.dret <= '0'; -- exception trigger -- trap_ctrl.instr_be <= '0'; trap_ctrl.instr_ma <= '0'; trap_ctrl.env_call <= '0'; trap_ctrl.break_point <= '0'; -- CSR access -- csr.we_nxt <= '0'; -- CONTROL DEFAULTS -- ctrl_nxt <= (others => '0'); -- default: all off ctrl_nxt(ctrl_alu_op2_c downto ctrl_alu_op0_c) <= alu_op_add_c; -- default ALU operation: ADD ctrl_nxt(ctrl_rf_mux1_c downto ctrl_rf_mux0_c) <= rf_mux_alu_c; -- default RF input: ALU -- ALU sign control -- if (execute_engine.i_reg(instr_opcode_lsb_c+4) = '1') then -- ALU ops ctrl_nxt(ctrl_alu_unsigned_c) <= execute_engine.i_reg(instr_funct3_lsb_c+0); -- unsigned ALU operation? (SLTIU, SLTU) else -- branches ctrl_nxt(ctrl_alu_unsigned_c) <= execute_engine.i_reg(instr_funct3_lsb_c+1); -- unsigned branches? (BLTU, BGEU) end if; -- atomic store-conditional instruction (evaluate lock status) -- ctrl_nxt(ctrl_bus_ch_lock_c) <= decode_aux.is_a_sc; -- state machine -- case execute_engine.state is when DISPATCH => -- Get new command from instruction issue engine -- ------------------------------------------------------------ -- PC update -- execute_engine.pc_mux_sel <= '0'; -- linear next PC -- IR update -- execute_engine.is_ci_nxt <= cmd_issue.data(32); -- flag to indicate a de-compressed instruction execute_engine.i_reg_nxt <= cmd_issue.data(31 downto 0); -- if (cmd_issue.valid = '1') then -- instruction available? -- PC update -- execute_engine.branched_nxt <= '0'; execute_engine.pc_we <= not execute_engine.branched; -- update PC with linear next_pc if there was no actual branch -- IR update - exceptions -- if (CPU_EXTENSION_RISCV_C = false) then trap_ctrl.instr_ma <= cmd_issue.data(33); -- misaligned instruction fetch address, if C disabled end if; trap_ctrl.instr_be <= cmd_issue.data(34); -- bus access fault during instruction fetch execute_engine.is_ici_nxt <= cmd_issue.data(35); -- invalid decompressed instruction -- any reason to go to trap state? -- if (execute_engine.sleep = '1') or -- enter sleep state (trap_ctrl.exc_fire = '1') or -- exception during LAST instruction (e.g. illegal instruction) (trap_ctrl.env_start = '1') or -- pending trap (IRQ or exception) ((cmd_issue.data(33) = '1') and (CPU_EXTENSION_RISCV_C = false)) or -- misaligned instruction fetch address (if C disabled) (cmd_issue.data(34) = '1') then -- bus access fault during instruction fetch execute_engine.state_nxt <= TRAP_ENTER; else execute_engine.state_nxt <= EXECUTE; end if; end if; when TRAP_ENTER => -- Start trap environment - get trap vector (depc or epc), stay here for sleep mode -- ------------------------------------------------------------ if (trap_ctrl.env_start = '1') then -- trap triggered? trap_ctrl.env_start_ack <= '1'; execute_engine.state_nxt <= TRAP_EXECUTE; end if; when TRAP_EXIT => -- Return from trap environment - get xEPC -- ------------------------------------------------------------ trap_ctrl.env_end <= '1'; execute_engine.state_nxt <= TRAP_EXECUTE; when TRAP_EXECUTE => -- Process trap environment -> jump to xTVEC / return from trap environment -> jump to xEPC -- ------------------------------------------------------------ execute_engine.pc_mux_sel <= '0'; -- next_PC fetch_engine.reset <= '1'; execute_engine.pc_we <= '1'; execute_engine.sleep_nxt <= '0'; -- disable sleep mode execute_engine.state_nxt <= DISPATCH; when EXECUTE => -- Decode and execute instruction (control has to be here for exactly 1 cycle in any case!) -- ------------------------------------------------------------ opcode_v := execute_engine.i_reg(instr_opcode_msb_c downto instr_opcode_lsb_c+2) & "11"; -- save some bits here, LSBs are always 11 for rv32 case opcode_v is when opcode_alu_c | opcode_alui_c => -- (register/immediate) ALU operation -- ------------------------------------------------------------ ctrl_nxt(ctrl_alu_opb_mux_c) <= not execute_engine.i_reg(instr_opcode_msb_c-1); -- use IMM as ALU.OPB for immediate operations -- ALU core operation -- case execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) is -- actual ALU.logic operation (re-coding) when funct3_subadd_c => -- ADD(I)/SUB if ((execute_engine.i_reg(instr_opcode_msb_c-1) = '1') and (execute_engine.i_reg(instr_funct7_msb_c-1) = '1')) then -- not an immediate op and funct7.6 set => SUB ctrl_nxt(ctrl_alu_op2_c downto ctrl_alu_op0_c) <= alu_op_sub_c; else ctrl_nxt(ctrl_alu_op2_c downto ctrl_alu_op0_c) <= alu_op_add_c; end if; when funct3_slt_c | funct3_sltu_c => -- SLT(I), SLTU(I) ctrl_nxt(ctrl_alu_op2_c downto ctrl_alu_op0_c) <= alu_op_slt_c; when funct3_xor_c => -- XOR(I) ctrl_nxt(ctrl_alu_op2_c downto ctrl_alu_op0_c) <= alu_op_xor_c; when funct3_or_c => -- OR(I) ctrl_nxt(ctrl_alu_op2_c downto ctrl_alu_op0_c) <= alu_op_or_c; when others => -- AND(I), multi-cycle / co-processor operations ctrl_nxt(ctrl_alu_op2_c downto ctrl_alu_op0_c) <= alu_op_and_c; end case; -- co-processor MULDIV operation (multi-cycle) -- if ((CPU_EXTENSION_RISCV_M = true) and ((decode_aux.is_m_mul = '1') or (decode_aux.is_m_div = '1'))) or -- MUL/DIV ((CPU_EXTENSION_RISCV_Zmmul = true) and (decode_aux.is_m_mul = '1')) then -- MUL ctrl_nxt(ctrl_cp_id_msb_c downto ctrl_cp_id_lsb_c) <= cp_sel_muldiv_c; -- trigger MULDIV CP execute_engine.state_nxt <= ALU_WAIT; -- co-processor BIT-MANIPULATION operation (multi-cycle) -- elsif (CPU_EXTENSION_RISCV_B = true) and (((execute_engine.i_reg(instr_opcode_lsb_c+5) = opcode_alu_c(5)) and (decode_aux.is_b_reg = '1')) or -- register operation ((execute_engine.i_reg(instr_opcode_lsb_c+5) = opcode_alui_c(5)) and (decode_aux.is_b_imm = '1'))) then -- immediate operation ctrl_nxt(ctrl_cp_id_msb_c downto ctrl_cp_id_lsb_c) <= cp_sel_bitmanip_c; -- trigger BITMANIP CP execute_engine.state_nxt <= ALU_WAIT; -- co-processor SHIFT operation (multi-cycle) -- elsif (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_sll_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_sr_c) then ctrl_nxt(ctrl_cp_id_msb_c downto ctrl_cp_id_lsb_c) <= cp_sel_shifter_c; -- trigger SHIFTER CP execute_engine.state_nxt <= ALU_WAIT; -- ALU CORE operation (single-cycle) -- else ctrl_nxt(ctrl_rf_wb_en_c) <= '1'; -- valid RF write-back execute_engine.state_nxt <= DISPATCH; end if; when opcode_lui_c | opcode_auipc_c => -- load upper immediate / add upper immediate to PC -- ------------------------------------------------------------ ctrl_nxt(ctrl_alu_opa_mux_c) <= '1'; -- ALU.OPA = PC (for AUIPC only) ctrl_nxt(ctrl_alu_opb_mux_c) <= '1'; -- use IMM as ALU.OPB if (execute_engine.i_reg(instr_opcode_lsb_c+5) = opcode_lui_c(5)) then -- LUI ctrl_nxt(ctrl_alu_op2_c downto ctrl_alu_op0_c) <= alu_op_movb_c; -- actual ALU operation = MOVB else -- AUIPC ctrl_nxt(ctrl_alu_op2_c downto ctrl_alu_op0_c) <= alu_op_add_c; -- actual ALU operation = ADD end if; ctrl_nxt(ctrl_rf_wb_en_c) <= '1'; -- valid RF write-back execute_engine.state_nxt <= DISPATCH; when opcode_load_c | opcode_store_c | opcode_atomic_c => -- load/store / atomic memory access -- ------------------------------------------------------------ ctrl_nxt(ctrl_alu_opb_mux_c) <= '1'; -- use IMM as ALU.OPB ctrl_nxt(ctrl_bus_mo_we_c) <= '1'; -- write to MAR and MDO (MDO only relevant for store) execute_engine.state_nxt <= LOADSTORE_0; when opcode_branch_c | opcode_jal_c | opcode_jalr_c => -- branch / jump and link (with register) -- ------------------------------------------------------------ if (execute_engine.i_reg(instr_opcode_lsb_c+3 downto instr_opcode_lsb_c+2) = opcode_jalr_c(3 downto 2)) then -- JALR ctrl_nxt(ctrl_alu_opa_mux_c) <= '0'; -- use RS1 as ALU.OPA (branch target address base) else -- JAL ctrl_nxt(ctrl_alu_opa_mux_c) <= '1'; -- use PC as ALU.OPA (branch target address base) end if; ctrl_nxt(ctrl_alu_opb_mux_c) <= '1'; -- use IMM as ALU.OPB (branch target address offset) execute_engine.state_nxt <= BRANCH; when opcode_fence_c => -- fence operations -- ------------------------------------------------------------ if (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_fence_c) then -- FENCE ctrl_nxt(ctrl_bus_fence_c) <= '1'; execute_engine.state_nxt <= DISPATCH; elsif (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_fencei_c) and (CPU_EXTENSION_RISCV_Zifencei = true) then -- FENCE.I ctrl_nxt(ctrl_bus_fencei_c) <= '1'; execute_engine.branched_nxt <= '1'; -- this is an actual branch execute_engine.state_nxt <= TRAP_EXECUTE; -- use TRAP_EXECUTE to "modify" PC (PC <= PC) else -- illegal fence instruction execute_engine.state_nxt <= DISPATCH; end if; when opcode_fop_c => -- floating-point operations -- ------------------------------------------------------------ if (CPU_EXTENSION_RISCV_Zfinx = true) then ctrl_nxt(ctrl_cp_id_msb_c downto ctrl_cp_id_lsb_c) <= cp_sel_fpu_c; -- trigger FPU CP execute_engine.state_nxt <= ALU_WAIT; else execute_engine.state_nxt <= DISPATCH; end if; when opcode_cust0_c => -- CFU: custom RISC-V instructions (CUSTOM0 OPCODE space) -- ------------------------------------------------------------ if (CPU_EXTENSION_RISCV_Zxcfu = true) then ctrl_nxt(ctrl_cp_id_msb_c downto ctrl_cp_id_lsb_c) <= cp_sel_cfu_c; -- trigger CFU CP execute_engine.state_nxt <= ALU_WAIT; else execute_engine.state_nxt <= DISPATCH; end if; when others => -- system/csr access OR illegal opcode -- ------------------------------------------------------------ if (CPU_EXTENSION_RISCV_Zicsr = true) then if (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_env_c) then -- system/environment execute_engine.state_nxt <= SYS_ENV; else -- CSR access execute_engine.state_nxt <= CSR_ACCESS; end if; else execute_engine.state_nxt <= DISPATCH; end if; end case; when SYS_ENV => -- system environment operation -- ------------------------------------------------------------ -- MRET / DRET -- if (execute_engine.i_reg(instr_funct12_msb_c downto instr_funct12_lsb_c) = funct12_mret_c) then execute_engine.state_nxt <= TRAP_EXIT; -- mret elsif (execute_engine.i_reg(instr_funct12_msb_c downto instr_funct12_lsb_c) = funct12_dret_c) and (CPU_EXTENSION_RISCV_DEBUG = true) then debug_ctrl.dret <= '1'; execute_engine.state_nxt <= TRAP_EXIT; -- dret else execute_engine.state_nxt <= DISPATCH; -- default end if; -- ECALL / EBREAK -- if ((execute_engine.i_reg(instr_funct12_msb_c downto instr_funct12_lsb_c+1) = funct12_ecall_c(11 downto 1))) then if (execute_engine.i_reg(instr_funct12_lsb_c) = funct12_ecall_c(0)) then trap_ctrl.env_call <= '1'; -- ecall else trap_ctrl.break_point <= '1'; -- ebreak end if; end if; -- WFI -- if (execute_engine.i_reg(instr_funct12_msb_c downto instr_funct12_lsb_c) = funct12_wfi_c) and ((CPU_EXTENSION_RISCV_DEBUG = false) or ((debug_ctrl.running = '0') and (csr.dcsr_step = '0'))) then execute_engine.sleep_nxt <= '1'; -- not executed (NOP) when in debug-mode or during single-stepping end if; when CSR_ACCESS => -- read & write status and control register (CSR) - no read/write if illegal instruction -- ------------------------------------------------------------ -- CSR write access [invalid CSR instructions are already checked by the illegal instruction logic] -- if (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_csrrw_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_csrrwi_c) or -- CSRRW(I); always write CSR (decode_aux.rs1_zero = '0') then -- CSRRS(I) / CSRRC(I): write CSR if rs1/imm5 is NOT zero csr.we_nxt <= '1'; end if; -- register file write back -- ctrl_nxt(ctrl_rf_mux1_c downto ctrl_rf_mux0_c) <= rf_mux_csr_c; ctrl_nxt(ctrl_rf_wb_en_c) <= '1'; -- valid RF write-back execute_engine.state_nxt <= DISPATCH; when ALU_WAIT => -- wait for multi-cycle ALU operation (ALU co-processor) to finish -- ------------------------------------------------------------ ctrl_nxt(ctrl_alu_op2_c downto ctrl_alu_op0_c) <= alu_op_cp_c; -- wait for completion or abort on illegal instruction exception (the co-processor will also terminate operations) if (alu_idone_i = '1') or (trap_ctrl.exc_buf(exc_iillegal_c) = '1') then ctrl_nxt(ctrl_rf_wb_en_c) <= '1'; -- valid RF write-back (won't happen in case of an illegal instruction) execute_engine.state_nxt <= DISPATCH; end if; when BRANCH => -- update PC for taken branches and jumps -- ------------------------------------------------------------ -- get and store return address (only relevant for jump-and-link operations) -- ctrl_nxt(ctrl_rf_mux1_c downto ctrl_rf_mux0_c) <= rf_mux_npc_c; -- next PC ctrl_nxt(ctrl_rf_wb_en_c) <= execute_engine.i_reg(instr_opcode_lsb_c+2); -- valid RF write-back? (is jump-and-link?) -- destination address -- execute_engine.pc_mux_sel <= '1'; -- PC <= alu.add = branch/jump destination if (execute_engine.i_reg(instr_opcode_lsb_c+2) = '1') or (execute_engine.branch_taken = '1') then -- JAL/JALR or taken branch -- no need to check for illegal instructions here; the branch condition evaluation circuit will not set "branch_taken" if funct3 is invalid execute_engine.pc_we <= '1'; -- update PC execute_engine.branched_nxt <= '1'; -- this is an actual branch fetch_engine.reset <= '1'; -- trigger new instruction fetch from modified PC end if; execute_engine.state_nxt <= DISPATCH; when LOADSTORE_0 => -- trigger memory request -- ------------------------------------------------------------ ctrl_nxt(ctrl_bus_lock_c) <= decode_aux.is_a_lr; -- atomic.LR: set lock if (execute_engine.i_reg(instr_opcode_msb_c-1) = '0') or (decode_aux.is_a_lr = '1') then -- normal load or atomic load-reservate ctrl_nxt(ctrl_bus_rd_c) <= '1'; -- read request else -- store if (decode_aux.is_a_sc = '0') or (CPU_EXTENSION_RISCV_A = false) then -- (normal) write request ctrl_nxt(ctrl_bus_wr_c) <= '1'; else -- evaluate lock state ctrl_nxt(ctrl_bus_wr_c) <= excl_state_i; -- write request if lock is still ok end if; end if; execute_engine.state_nxt <= LOADSTORE_1; when LOADSTORE_1 => -- memory access latency -- ------------------------------------------------------------ ctrl_nxt(ctrl_bus_mi_we_c) <= '1'; -- write input data to MDI (only relevant for LOADs) execute_engine.state_nxt <= LOADSTORE_2; when LOADSTORE_2 => -- wait for bus transaction to finish -- ------------------------------------------------------------ ctrl_nxt(ctrl_bus_mi_we_c) <= '1'; -- keep writing input data to MDI (only relevant for load (and SC.W) operations) ctrl_nxt(ctrl_rf_mux1_c downto ctrl_rf_mux0_c) <= rf_mux_mem_c; -- memory read data -- wait for memory response -- if (trap_ctrl.env_start = '1') and (trap_ctrl.cause(6 downto 5) = "00") then -- abort if SYNC EXCEPTION (from bus or illegal cmd) / no IRQs and NOT DEBUG-MODE-related execute_engine.state_nxt <= DISPATCH; elsif (bus_d_wait_i = '0') then -- wait for bus to finish transaction -- data write-back -- if (execute_engine.i_reg(instr_opcode_msb_c-1) = '0') or -- normal load (decode_aux.is_a_lr = '1') or -- atomic load-reservate (decode_aux.is_a_sc = '1') then -- atomic store-conditional ctrl_nxt(ctrl_rf_wb_en_c) <= '1'; end if; -- remove atomic lock if this is NOT the LR.W instruction used to SET the lock -- if (decode_aux.is_a_lr = '0') then -- execute and evaluate atomic store-conditional ctrl_nxt(ctrl_bus_de_lock_c) <= '1'; end if; execute_engine.state_nxt <= DISPATCH; end if; when others => -- undefined -- ------------------------------------------------------------ execute_engine.state_nxt <= DISPATCH; end case; end process execute_engine_fsm_comb; -- **************************************************************************************************************************** -- Illegal Instruction and CSR Access Check -- **************************************************************************************************************************** -- CSR Access Check ----------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- csr_access_check: process(execute_engine.i_reg, decode_aux, csr, debug_ctrl) variable csr_wacc_v : std_ulogic; -- actual CSR write begin -- is this CSR instruction really going to write to a CSR? -- if (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_csrrw_c) or -- always write CSR (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_csrrwi_c) or -- always write CSR (decode_aux.rs1_zero = '0') then -- clear/set: write CSR if rs1/imm5 is NOT zero csr_wacc_v := '1'; else csr_wacc_v := '0'; end if; -- check CSR access -- csr_acc_valid <= '0'; -- default: invalid access case csr.addr is -- floating-point CSRs -- when csr_fflags_c | csr_frm_c | csr_fcsr_c => csr_acc_valid <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zfinx); -- full access for everyone if FPU implemented -- machine trap setup/handling & counters -- when csr_mstatus_c | csr_mstatush_c | csr_misa_c | csr_mie_c | csr_mtvec_c | csr_mscratch_c | csr_mepc_c | csr_mcause_c | csr_mip_c | csr_mtval_c | csr_mcycle_c | csr_mcycleh_c | csr_minstret_c | csr_minstreth_c | csr_mcountinhibit_c => -- NOTE: MISA and MTVAL are read-only in the NEORV32 but we do not cause an exception here for compatibility. -- Machine-level code should read-back those CSRs after writing them to realize they are read-only. csr_acc_valid <= csr.privilege_eff; -- M-mode only -- machine information registers & NEORV32-specific registers, read-only -- when csr_mvendorid_c | csr_marchid_c | csr_mimpid_c | csr_mhartid_c | csr_mconfigptr_c | csr_mxisa_c => csr_acc_valid <= (not csr_wacc_v) and csr.privilege_eff; -- M-mode only, read-only -- user-mode registers -- when csr_mcounteren_c | csr_menvcfg_c | csr_menvcfgh_c => csr_acc_valid <= csr.privilege_eff and bool_to_ulogic_f(CPU_EXTENSION_RISCV_U); -- physical memory protection (PMP) -- when csr_pmpaddr0_c | csr_pmpaddr1_c | csr_pmpaddr2_c | csr_pmpaddr3_c | csr_pmpaddr4_c | csr_pmpaddr5_c | csr_pmpaddr6_c | csr_pmpaddr7_c | -- address csr_pmpaddr8_c | csr_pmpaddr9_c | csr_pmpaddr10_c | csr_pmpaddr11_c | csr_pmpaddr12_c | csr_pmpaddr13_c | csr_pmpaddr14_c | csr_pmpaddr15_c | csr_pmpcfg0_c | csr_pmpcfg1_c | csr_pmpcfg2_c | csr_pmpcfg3_c => -- configuration csr_acc_valid <= csr.privilege_eff and bool_to_ulogic_f(boolean(PMP_NUM_REGIONS > 0)); -- M-mode only -- machine hardware performance monitors (MHPM) -- when csr_mhpmcounter3_c | csr_mhpmcounter4_c | csr_mhpmcounter5_c | csr_mhpmcounter6_c | csr_mhpmcounter7_c | csr_mhpmcounter8_c | -- counter LOW csr_mhpmcounter9_c | csr_mhpmcounter10_c | csr_mhpmcounter11_c | csr_mhpmcounter12_c | csr_mhpmcounter13_c | csr_mhpmcounter14_c | csr_mhpmcounter15_c | csr_mhpmcounter16_c | csr_mhpmcounter17_c | csr_mhpmcounter18_c | csr_mhpmcounter19_c | csr_mhpmcounter20_c | csr_mhpmcounter21_c | csr_mhpmcounter22_c | csr_mhpmcounter23_c | csr_mhpmcounter24_c | csr_mhpmcounter25_c | csr_mhpmcounter26_c | csr_mhpmcounter27_c | csr_mhpmcounter28_c | csr_mhpmcounter29_c | csr_mhpmcounter30_c | csr_mhpmcounter31_c | csr_mhpmcounter3h_c | csr_mhpmcounter4h_c | csr_mhpmcounter5h_c | csr_mhpmcounter6h_c | csr_mhpmcounter7h_c | csr_mhpmcounter8h_c | -- counter HIGH csr_mhpmcounter9h_c | csr_mhpmcounter10h_c | csr_mhpmcounter11h_c | csr_mhpmcounter12h_c | csr_mhpmcounter13h_c | csr_mhpmcounter14h_c | csr_mhpmcounter15h_c | csr_mhpmcounter16h_c | csr_mhpmcounter17h_c | csr_mhpmcounter18h_c | csr_mhpmcounter19h_c | csr_mhpmcounter20h_c | csr_mhpmcounter21h_c | csr_mhpmcounter22h_c | csr_mhpmcounter23h_c | csr_mhpmcounter24h_c | csr_mhpmcounter25h_c | csr_mhpmcounter26h_c | csr_mhpmcounter27h_c | csr_mhpmcounter28h_c | csr_mhpmcounter29h_c | csr_mhpmcounter30h_c | csr_mhpmcounter31h_c | csr_mhpmevent3_c | csr_mhpmevent4_c | csr_mhpmevent5_c | csr_mhpmevent6_c | csr_mhpmevent7_c | csr_mhpmevent8_c | -- event configuration csr_mhpmevent9_c | csr_mhpmevent10_c | csr_mhpmevent11_c | csr_mhpmevent12_c | csr_mhpmevent13_c | csr_mhpmevent14_c | csr_mhpmevent15_c | csr_mhpmevent16_c | csr_mhpmevent17_c | csr_mhpmevent18_c | csr_mhpmevent19_c | csr_mhpmevent20_c | csr_mhpmevent21_c | csr_mhpmevent22_c | csr_mhpmevent23_c | csr_mhpmevent24_c | csr_mhpmevent25_c | csr_mhpmevent26_c | csr_mhpmevent27_c | csr_mhpmevent28_c | csr_mhpmevent29_c | csr_mhpmevent30_c | csr_mhpmevent31_c => csr_acc_valid <= csr.privilege_eff and bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zihpm); -- M-mode only -- -- user hardware performance monitors (HPM) -- -- when csr_hpmcounter3_c | csr_hpmcounter4_c | csr_hpmcounter5_c | csr_hpmcounter6_c | csr_hpmcounter7_c | csr_hpmcounter8_c | -- counter LOW -- csr_hpmcounter9_c | csr_hpmcounter10_c | csr_hpmcounter11_c | csr_hpmcounter12_c | csr_hpmcounter13_c | csr_hpmcounter14_c | -- csr_hpmcounter15_c | csr_hpmcounter16_c | csr_hpmcounter17_c | csr_hpmcounter18_c | csr_hpmcounter19_c | csr_hpmcounter20_c | -- csr_hpmcounter21_c | csr_hpmcounter22_c | csr_hpmcounter23_c | csr_hpmcounter24_c | csr_hpmcounter25_c | csr_hpmcounter26_c | -- csr_hpmcounter27_c | csr_hpmcounter28_c | csr_hpmcounter29_c | csr_hpmcounter30_c | csr_hpmcounter31_c | -- csr_hpmcounter3h_c | csr_hpmcounter4h_c | csr_hpmcounter5h_c | csr_hpmcounter6h_c | csr_hpmcounter7h_c | csr_hpmcounter8h_c | -- counter HIGH -- csr_hpmcounter9h_c | csr_hpmcounter10h_c | csr_hpmcounter11h_c | csr_hpmcounter12h_c | csr_hpmcounter13h_c | csr_hpmcounter14h_c | -- csr_hpmcounter15h_c | csr_hpmcounter16h_c | csr_hpmcounter17h_c | csr_hpmcounter18h_c | csr_hpmcounter19h_c | csr_hpmcounter20h_c | -- csr_hpmcounter21h_c | csr_hpmcounter22h_c | csr_hpmcounter23h_c | csr_hpmcounter24h_c | csr_hpmcounter25h_c | csr_hpmcounter26h_c | -- csr_hpmcounter27h_c | csr_hpmcounter28h_c | csr_hpmcounter29h_c | csr_hpmcounter30h_c | csr_hpmcounter31h_c => -- csr_acc_valid <= '0'; -- >>> NOT IMPLEMENTED <<< -- user-level counters/timers (read-only) -- when csr_cycle_c | csr_cycleh_c | csr_time_c | csr_timeh_c | csr_instret_c | csr_instreth_c => case csr.addr(1 downto 0) is when "00" => csr_acc_valid <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zicntr) and (not csr_wacc_v) and (csr.privilege_eff or csr.mcounteren_cy); -- cyle[h]: M-mode, U-mode if authorized, implemented at all, read-only when "01" => csr_acc_valid <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zicntr) and (not csr_wacc_v) and (csr.privilege_eff or csr.mcounteren_tm); -- time[h]: M-mode, U-mode if authorized, implemented at all, read-only when "10" => csr_acc_valid <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zicntr) and (not csr_wacc_v) and (csr.privilege_eff or csr.mcounteren_ir); -- instret[h]: M-mode, U-mode if authorized, implemented at all read-only when others => csr_acc_valid <= '0'; end case; -- debug mode CSRs -- when csr_dcsr_c | csr_dpc_c | csr_dscratch0_c => csr_acc_valid <= debug_ctrl.running and bool_to_ulogic_f(CPU_EXTENSION_RISCV_DEBUG); -- access only in debug-mode -- trigger module CSRs -- when csr_tselect_c | csr_tdata1_c | csr_tdata2_c | csr_tdata3_c | csr_tinfo_c | csr_tcontrol_c | csr_mcontext_c | csr_scontext_c => -- access in debug-mode or M-mode (M-mode: writes to tdata* are ignored as DMODE is hardwired to 1) csr_acc_valid <= (debug_ctrl.running or csr.privilege_eff) and bool_to_ulogic_f(CPU_EXTENSION_RISCV_DEBUG); -- undefined / not implemented -- when others => csr_acc_valid <= '0'; -- invalid access end case; end process csr_access_check; -- Illegal Instruction Check -------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- illegal_instruction_check: process(execute_engine, decode_aux, csr, csr_acc_valid, debug_ctrl) variable opcode_v : std_ulogic_vector(6 downto 0); begin -- defaults -- illegal_instruction <= '0'; illegal_register <= '0'; -- check opcode for rv32 -- if (execute_engine.i_reg(instr_opcode_lsb_c+1 downto instr_opcode_lsb_c) = "11") then illegal_opcode_lsbs <= '0'; else illegal_opcode_lsbs <= '1'; end if; -- check for illegal compressed instruction -- if (CPU_EXTENSION_RISCV_C = true) then illegal_compressed <= execute_engine.is_ici; else illegal_compressed <= '0'; end if; -- check instructions -- opcode_v := execute_engine.i_reg(instr_opcode_msb_c downto instr_opcode_lsb_c+2) & "11"; -- save some bits here, LSBs are always 11 for rv32 case opcode_v is when opcode_lui_c | opcode_auipc_c | opcode_jal_c => -- check sufficient LUI, UIPC, JAL (only check actual OPCODE) -- ------------------------------------------------------------ illegal_instruction <= '0'; -- illegal E-CPU register? -- illegal_register <= execute_engine.i_reg(instr_rd_msb_c); when opcode_alu_c => -- check ALU.funct3 & ALU.funct7 -- ------------------------------------------------------------ if (((execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_subadd_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_sr_c)) and (execute_engine.i_reg(instr_funct7_msb_c-2 downto instr_funct7_lsb_c) = "00000") and (execute_engine.i_reg(instr_funct7_msb_c) = '0')) or (((execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_sll_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_slt_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_sltu_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_xor_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_or_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_and_c)) and (execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0000000")) then -- valid base ALUI instruction? illegal_instruction <= '0'; elsif ((CPU_EXTENSION_RISCV_M = true) or (CPU_EXTENSION_RISCV_Zmmul = false)) and (decode_aux.is_m_mul = '1') then -- valid MUL instruction? illegal_instruction <= '0'; elsif (CPU_EXTENSION_RISCV_M = true) and (decode_aux.is_m_div = '1') then -- valid DIV instruction? illegal_instruction <= '0'; elsif (CPU_EXTENSION_RISCV_B = true) and (decode_aux.is_b_reg = '1') then -- valid BITMANIP instruction? illegal_instruction <= '0'; else illegal_instruction <= '1'; end if; -- illegal E-CPU register? -- illegal_register <= execute_engine.i_reg(instr_rd_msb_c) or execute_engine.i_reg(instr_rs1_msb_c) or execute_engine.i_reg(instr_rs2_msb_c); when opcode_alui_c => -- check ALUI.funct7 -- ------------------------------------------------------------ if (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_subadd_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_slt_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_sltu_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_xor_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_or_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_and_c) or ((execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_sll_c) and -- shift logical left (execute_engine.i_reg(instr_funct7_msb_c downto instr_funct7_lsb_c) = "0000000")) or ((execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_sr_c) and -- shift right ((execute_engine.i_reg(instr_funct7_msb_c-2 downto instr_funct7_lsb_c) = "00000") and (execute_engine.i_reg(instr_funct7_msb_c) = '0'))) then -- valid base ALUI instruction? illegal_instruction <= '0'; elsif (CPU_EXTENSION_RISCV_B = true) and (decode_aux.is_b_imm = '1') then -- valid BITMANIP immediate instruction? illegal_instruction <= '0'; else illegal_instruction <= '1'; end if; -- illegal E-CPU register? -- illegal_register <= execute_engine.i_reg(instr_rs1_msb_c) or execute_engine.i_reg(instr_rd_msb_c); when opcode_load_c => -- check LOAD.funct3 -- ------------------------------------------------------------ if (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_lb_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_lh_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_lw_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_lbu_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_lhu_c) then illegal_instruction <= '0'; else illegal_instruction <= '1'; end if; -- illegal E-CPU register? -- illegal_register <= execute_engine.i_reg(instr_rs1_msb_c) or execute_engine.i_reg(instr_rd_msb_c); when opcode_store_c => -- check STORE.funct3 -- ------------------------------------------------------------ if (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_sb_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_sh_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_sw_c) then illegal_instruction <= '0'; else illegal_instruction <= '1'; end if; -- illegal E-CPU register? -- illegal_register <= execute_engine.i_reg(instr_rs2_msb_c) or execute_engine.i_reg(instr_rs1_msb_c); when opcode_atomic_c => -- atomic instructions -- ------------------------------------------------------------ if (CPU_EXTENSION_RISCV_A = true) then if (execute_engine.i_reg(instr_funct5_msb_c downto instr_funct5_lsb_c) = "00010") then -- LR illegal_instruction <= '0'; -- illegal E-CPU register? -- illegal_register <= execute_engine.i_reg(instr_rs1_msb_c) or execute_engine.i_reg(instr_rd_msb_c); elsif (execute_engine.i_reg(instr_funct5_msb_c downto instr_funct5_lsb_c) = "00011") then -- SC illegal_instruction <= '0'; -- illegal E-CPU register? -- illegal_register <= execute_engine.i_reg(instr_rs1_msb_c) or execute_engine.i_reg(instr_rs2_msb_c) or execute_engine.i_reg(instr_rd_msb_c); else illegal_instruction <= '1'; end if; else illegal_instruction <= '1'; end if; when opcode_branch_c => -- check BRANCH.funct3 -- ------------------------------------------------------------ if (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_beq_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_bne_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_blt_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_bge_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_bltu_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_bgeu_c) then illegal_instruction <= '0'; else illegal_instruction <= '1'; end if; -- illegal E-CPU register? -- illegal_register <= execute_engine.i_reg(instr_rs2_msb_c) or execute_engine.i_reg(instr_rs1_msb_c); when opcode_jalr_c => -- check JALR.funct3 -- ------------------------------------------------------------ if (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "000") then illegal_instruction <= '0'; else illegal_instruction <= '1'; end if; -- illegal E-CPU register? -- illegal_register <= execute_engine.i_reg(instr_rs1_msb_c) or execute_engine.i_reg(instr_rd_msb_c); when opcode_fence_c => -- check FENCE.funct3 -- ------------------------------------------------------------ if ((execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_fencei_c) and (CPU_EXTENSION_RISCV_Zifencei = true)) or -- FENCE.I (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_fence_c) then -- FENCE illegal_instruction <= '0'; else illegal_instruction <= '1'; end if; -- NOTE: ignore all remaining bit fields here when opcode_syscsr_c => -- check system instructions -- ------------------------------------------------------------ -- CSR access -- if ((execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_csrrw_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_csrrs_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_csrrc_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_csrrwi_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_csrrsi_c) or (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_csrrci_c)) and (csr_acc_valid = '1') then -- valid CSR access? illegal_instruction <= '0'; -- illegal E-CPU register? -- if (execute_engine.i_reg(instr_funct3_msb_c) = '0') then -- reg-reg CSR illegal_register <= execute_engine.i_reg(instr_rs1_msb_c) or execute_engine.i_reg(instr_rd_msb_c); else -- reg-imm CSR illegal_register <= execute_engine.i_reg(instr_rd_msb_c); end if; -- system: ecall, ebreak, mret, wfi, dret -- -- > WFI is always allowed to execute in M-mode; in U-mode it is allowed to execute if mstatus.TW = 0 elsif (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = "000") and (decode_aux.rs1_zero = '1') and (decode_aux.rd_zero = '1') and ((execute_engine.i_reg(instr_funct12_msb_c downto instr_funct12_lsb_c) = funct12_ecall_c) or -- ECALL (execute_engine.i_reg(instr_funct12_msb_c downto instr_funct12_lsb_c) = funct12_ebreak_c) or -- EBREAK ((execute_engine.i_reg(instr_funct12_msb_c downto instr_funct12_lsb_c) = funct12_mret_c) and (csr.privilege = priv_mode_m_c)) or -- MRET (only allowed in ACTUAL M-mode) ((execute_engine.i_reg(instr_funct12_msb_c downto instr_funct12_lsb_c) = funct12_dret_c) and (CPU_EXTENSION_RISCV_DEBUG = true) and (debug_ctrl.running = '1')) or -- DRET (only allowed in D-mode) ((execute_engine.i_reg(instr_funct12_msb_c downto instr_funct12_lsb_c) = funct12_wfi_c) and ((csr.privilege = priv_mode_m_c) or (csr.mstatus_tw = '0')))) then -- WFI illegal_instruction <= '0'; else illegal_instruction <= '1'; end if; when opcode_fop_c => -- floating point operations - single/dual operands -- ------------------------------------------------------------ if (CPU_EXTENSION_RISCV_Zfinx = true) and -- F extension implemented (execute_engine.i_reg(instr_funct7_lsb_c+1 downto instr_funct7_lsb_c) = float_single_c) and -- single-precision operations only (decode_aux.is_f_op = '1') then -- is correct/supported floating-point instruction illegal_instruction <= '0'; else illegal_instruction <= '1'; end if; -- illegal E-CPU register? -- -- FIXME: rs2 is not checked! illegal_register <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zfinx) and (execute_engine.i_reg(instr_rs1_msb_c) or execute_engine.i_reg(instr_rd_msb_c)); when opcode_cust0_c => -- CFU: custom instructions -- ------------------------------------------------------------ if (CPU_EXTENSION_RISCV_Zxcfu = true) then -- CFU extension implemented illegal_instruction <= '0'; else illegal_instruction <= '1'; end if; -- illegal E-CPU register? -- illegal_register <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zxcfu) and (execute_engine.i_reg(instr_rs2_msb_c) or execute_engine.i_reg(instr_rs1_msb_c) or execute_engine.i_reg(instr_rd_msb_c)); when others => -- undefined instruction -> illegal! -- ------------------------------------------------------------ illegal_instruction <= '1'; end case; end process illegal_instruction_check; -- Illegal Operation Check ---------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- -- check in EXECUTE state: any illegal condition? -- trap_ctrl.instr_il <= (illegal_opcode_lsbs or -- illegal opcode LSB bits - not rv32 illegal_instruction or -- illegal instruction (bool_to_ulogic_f(CPU_EXTENSION_RISCV_E) and illegal_register) or -- illegal register access in E extension illegal_compressed) -- illegal compressed instruction when (execute_engine.state = EXECUTE) else '0'; -- **************************************************************************************************************************** -- Exception and Interrupt (= Traps) Control -- **************************************************************************************************************************** -- Trap Controller ------------------------------------------------------------------------ -- ------------------------------------------------------------------------------------------- trap_controller: process(rstn_i, clk_i) variable mode_m_v, mode_u_v : std_ulogic; begin if (rstn_i = '0') then trap_ctrl.exc_buf <= (others => '0'); trap_ctrl.irq_buf <= (others => '0'); trap_ctrl.env_start <= '0'; trap_ctrl.cause <= (others => '0'); elsif rising_edge(clk_i) then if (CPU_EXTENSION_RISCV_Zicsr = true) then -- > clear all queued exception triggers when starting the trap handling environment (trap_ctrl.env_start = 1) -- exception queue: misaligned load/store/instruction address -- trap_ctrl.exc_buf(exc_lalign_c) <= (trap_ctrl.exc_buf(exc_lalign_c) or ma_load_i) and (not trap_ctrl.env_start); trap_ctrl.exc_buf(exc_salign_c) <= (trap_ctrl.exc_buf(exc_salign_c) or ma_store_i) and (not trap_ctrl.env_start); trap_ctrl.exc_buf(exc_ialign_c) <= (trap_ctrl.exc_buf(exc_ialign_c) or trap_ctrl.instr_ma) and (not trap_ctrl.env_start); -- exception queue: load/store/instruction bus access error -- trap_ctrl.exc_buf(exc_laccess_c) <= (trap_ctrl.exc_buf(exc_laccess_c) or be_load_i) and (not trap_ctrl.env_start); trap_ctrl.exc_buf(exc_saccess_c) <= (trap_ctrl.exc_buf(exc_saccess_c) or be_store_i) and (not trap_ctrl.env_start); trap_ctrl.exc_buf(exc_iaccess_c) <= (trap_ctrl.exc_buf(exc_iaccess_c) or trap_ctrl.instr_be) and (not trap_ctrl.env_start); -- exception queue: illegal instruction / environment calls -- trap_ctrl.exc_buf(exc_m_envcall_c) <= (trap_ctrl.exc_buf(exc_m_envcall_c) or (trap_ctrl.env_call and ( csr.privilege))) and (not trap_ctrl.env_start); trap_ctrl.exc_buf(exc_u_envcall_c) <= (trap_ctrl.exc_buf(exc_u_envcall_c) or (trap_ctrl.env_call and (not csr.privilege))) and (not trap_ctrl.env_start); trap_ctrl.exc_buf(exc_iillegal_c) <= (trap_ctrl.exc_buf(exc_iillegal_c) or trap_ctrl.instr_il) and (not trap_ctrl.env_start); -- exception queue: break point -- if (CPU_EXTENSION_RISCV_DEBUG = true) then trap_ctrl.exc_buf(exc_break_c) <= (not trap_ctrl.env_start) and (trap_ctrl.exc_buf(exc_break_c) or (trap_ctrl.break_point and ( csr.privilege) and (not csr.dcsr_ebreakm) and (not debug_ctrl.running)) or -- break to machine-trap-handler when in machine mode on "ebreak" (trap_ctrl.break_point and (not csr.privilege) and (not csr.dcsr_ebreaku) and (not debug_ctrl.running))); -- break to machine-trap-handler when in user mode on "ebreak" else trap_ctrl.exc_buf(exc_break_c) <= (trap_ctrl.exc_buf(exc_break_c) or trap_ctrl.break_point) and (not trap_ctrl.env_start); end if; -- exception queue / interrupt buffer: enter debug mode -- if (CPU_EXTENSION_RISCV_DEBUG = true) then trap_ctrl.exc_buf(exc_db_break_c) <= (trap_ctrl.exc_buf(exc_db_break_c) or debug_ctrl.trig_break) and (not trap_ctrl.env_start); trap_ctrl.exc_buf(exc_db_hw_c) <= (trap_ctrl.exc_buf(exc_db_hw_c) or debug_ctrl.trig_hw) and (not trap_ctrl.env_start); trap_ctrl.irq_buf(irq_db_halt_c) <= debug_ctrl.trig_halt; trap_ctrl.irq_buf(irq_db_step_c) <= debug_ctrl.trig_step; end if; -- interrupt buffer: machine software/external/timer interrupt -- trap_ctrl.irq_buf(irq_msw_irq_c) <= csr.mie_msie and msw_irq_i; trap_ctrl.irq_buf(irq_mext_irq_c) <= csr.mie_meie and mext_irq_i; trap_ctrl.irq_buf(irq_mtime_irq_c) <= csr.mie_mtie and mtime_irq_i; -- interrupt *queue*: NEORV32-specific fast interrupts (FIRQ) - require manual ACK/clear -- trap_ctrl.irq_buf(irq_firq_15_c downto irq_firq_0_c) <= (trap_ctrl.irq_buf(irq_firq_15_c downto irq_firq_0_c) or (csr.mie_firqe and firq_i)) and csr.mip_firq_nclr; -- trap environment control -- if (trap_ctrl.env_start = '0') then -- no started trap handler if (trap_ctrl.exc_fire = '1') or ((trap_ctrl.irq_fire = '1') and -- exception triggered! ((execute_engine.state = EXECUTE) or (execute_engine.state = TRAP_ENTER))) then -- fire IRQs in EXECUTE or TRAP state only to continue execution even on permanent IRQ trap_ctrl.cause <= trap_ctrl.cause_nxt; -- capture trap ID for mcause csr trap_ctrl.env_start <= '1'; -- now execute engine can start trap handler end if; elsif (trap_ctrl.env_start_ack = '1') then -- start of trap handler acknowledged by execute engine trap_ctrl.env_start <= '0'; end if; end if; end if; end process trap_controller; -- any exception/interrupt? -- trap_ctrl.exc_fire <= or_reduce_f(trap_ctrl.exc_buf); -- sync. exceptions CANNOT be masked trap_ctrl.irq_fire <= (or_reduce_f(trap_ctrl.irq_buf) and csr.mstatus_mie and trap_ctrl.db_irq_en) or trap_ctrl.db_irq_fire; -- interrupts CAN be masked (but not the DEBUG halt IRQ) -- debug mode (entry) interrupts -- trap_ctrl.db_irq_en <= '0' when (CPU_EXTENSION_RISCV_DEBUG = true) and ((debug_ctrl.running = '1') or (csr.dcsr_step = '1')) else '1'; -- no interrupts when IN debug mode or IN single-step mode trap_ctrl.db_irq_fire <= (trap_ctrl.irq_buf(irq_db_step_c) or trap_ctrl.irq_buf(irq_db_halt_c)) when (CPU_EXTENSION_RISCV_DEBUG = true) else '0'; -- "NMI" for debug mode entry -- Trap Priority Encoder ------------------------------------------------------------------ -- ------------------------------------------------------------------------------------------- trap_priority: process(trap_ctrl) begin -- ---------------------------------------------------------------------------------------- -- the following traps are caused by *synchronous* exceptions; we do not need a -- specific acknowledge mask since only _one_ exception (the one with highest priority) -- is allowed to kick in at once -- ---------------------------------------------------------------------------------------- -- exception: 0.0 instruction address misaligned -- if (trap_ctrl.exc_buf(exc_ialign_c) = '1') then trap_ctrl.cause_nxt <= trap_ima_c; -- exception: 0.1 instruction access fault -- elsif (trap_ctrl.exc_buf(exc_iaccess_c) = '1') then trap_ctrl.cause_nxt <= trap_iba_c; -- exception: 0.2 illegal instruction -- elsif (trap_ctrl.exc_buf(exc_iillegal_c) = '1') then trap_ctrl.cause_nxt <= trap_iil_c; -- exception: 0.11 environment call from M-mode -- elsif (trap_ctrl.exc_buf(exc_m_envcall_c) = '1') then trap_ctrl.cause_nxt <= trap_menv_c; -- exception: 0.8 environment call from U-mode -- elsif (trap_ctrl.exc_buf(exc_u_envcall_c) = '1') then trap_ctrl.cause_nxt <= trap_uenv_c; -- exception: 0.3 breakpoint -- elsif (trap_ctrl.exc_buf(exc_break_c) = '1') then trap_ctrl.cause_nxt <= trap_brk_c; -- exception: 0.6 store address misaligned - elsif (trap_ctrl.exc_buf(exc_salign_c) = '1') then trap_ctrl.cause_nxt <= trap_sma_c; -- exception: 0.4 load address misaligned -- elsif (trap_ctrl.exc_buf(exc_lalign_c) = '1') then trap_ctrl.cause_nxt <= trap_lma_c; -- exception: 0.7 store access fault -- elsif (trap_ctrl.exc_buf(exc_saccess_c) = '1') then trap_ctrl.cause_nxt <= trap_sbe_c; -- exception: 0.5 load access fault -- elsif (trap_ctrl.exc_buf(exc_laccess_c) = '1') then trap_ctrl.cause_nxt <= trap_lbe_c; -- ---------------------------------------------------------------------------------------- -- (re-)enter debug mode requests: basically, these are standard traps that have some -- special handling - they have the highest INTERRUPT priority in order to go to debug when requested -- even if other IRQs are pending right now -- ---------------------------------------------------------------------------------------- -- hardware trigger (sync) -- elsif (trap_ctrl.exc_buf(exc_db_hw_c) = '1') then trap_ctrl.cause_nxt <= trap_db_hw_c; -- break instruction (sync) -- elsif (trap_ctrl.exc_buf(exc_db_break_c) = '1') then trap_ctrl.cause_nxt <= trap_db_break_c; -- async. exceptions / interrupts -- external halt request (async) -- elsif (trap_ctrl.irq_buf(irq_db_halt_c) = '1') then trap_ctrl.cause_nxt <= trap_db_halt_c; -- single stepping (async) -- elsif (trap_ctrl.irq_buf(irq_db_step_c) = '1') then trap_ctrl.cause_nxt <= trap_db_step_c; -- ---------------------------------------------------------------------------------------- -- custom FAST interrupts (*asynchronous* exceptions) -- ---------------------------------------------------------------------------------------- -- interrupt: 1.16 fast interrupt channel 0 -- elsif (trap_ctrl.irq_buf(irq_firq_0_c) = '1') then trap_ctrl.cause_nxt <= trap_firq0_c; -- interrupt: 1.17 fast interrupt channel 1 -- elsif (trap_ctrl.irq_buf(irq_firq_1_c) = '1') then trap_ctrl.cause_nxt <= trap_firq1_c; -- interrupt: 1.18 fast interrupt channel 2 -- elsif (trap_ctrl.irq_buf(irq_firq_2_c) = '1') then trap_ctrl.cause_nxt <= trap_firq2_c; -- interrupt: 1.19 fast interrupt channel 3 -- elsif (trap_ctrl.irq_buf(irq_firq_3_c) = '1') then trap_ctrl.cause_nxt <= trap_firq3_c; -- interrupt: 1.20 fast interrupt channel 4 -- elsif (trap_ctrl.irq_buf(irq_firq_4_c) = '1') then trap_ctrl.cause_nxt <= trap_firq4_c; -- interrupt: 1.21 fast interrupt channel 5 -- elsif (trap_ctrl.irq_buf(irq_firq_5_c) = '1') then trap_ctrl.cause_nxt <= trap_firq5_c; -- interrupt: 1.22 fast interrupt channel 6 -- elsif (trap_ctrl.irq_buf(irq_firq_6_c) = '1') then trap_ctrl.cause_nxt <= trap_firq6_c; -- interrupt: 1.23 fast interrupt channel 7 -- elsif (trap_ctrl.irq_buf(irq_firq_7_c) = '1') then trap_ctrl.cause_nxt <= trap_firq7_c; -- interrupt: 1.24 fast interrupt channel 8 -- elsif (trap_ctrl.irq_buf(irq_firq_8_c) = '1') then trap_ctrl.cause_nxt <= trap_firq8_c; -- interrupt: 1.25 fast interrupt channel 9 -- elsif (trap_ctrl.irq_buf(irq_firq_9_c) = '1') then trap_ctrl.cause_nxt <= trap_firq9_c; -- interrupt: 1.26 fast interrupt channel 10 -- elsif (trap_ctrl.irq_buf(irq_firq_10_c) = '1') then trap_ctrl.cause_nxt <= trap_firq10_c; -- interrupt: 1.27 fast interrupt channel 11 -- elsif (trap_ctrl.irq_buf(irq_firq_11_c) = '1') then trap_ctrl.cause_nxt <= trap_firq11_c; -- interrupt: 1.28 fast interrupt channel 12 -- elsif (trap_ctrl.irq_buf(irq_firq_12_c) = '1') then trap_ctrl.cause_nxt <= trap_firq12_c; -- interrupt: 1.29 fast interrupt channel 13 -- elsif (trap_ctrl.irq_buf(irq_firq_13_c) = '1') then trap_ctrl.cause_nxt <= trap_firq13_c; -- interrupt: 1.30 fast interrupt channel 14 -- elsif (trap_ctrl.irq_buf(irq_firq_14_c) = '1') then trap_ctrl.cause_nxt <= trap_firq14_c; -- interrupt: 1.31 fast interrupt channel 15 -- elsif (trap_ctrl.irq_buf(irq_firq_15_c) = '1') then trap_ctrl.cause_nxt <= trap_firq15_c; -- ---------------------------------------------------------------------------------------- -- standard RISC-V interrupts (*asynchronous* exceptions) -- ---------------------------------------------------------------------------------------- -- interrupt: 1.11 machine external interrupt (MEI) -- elsif (trap_ctrl.irq_buf(irq_mext_irq_c) = '1') then trap_ctrl.cause_nxt <= trap_mei_c; -- interrupt: 1.3 machine SW interrupt (MSI) -- elsif (trap_ctrl.irq_buf(irq_msw_irq_c) = '1') then trap_ctrl.cause_nxt <= trap_msi_c; -- interrupt: 1.7 machine timer interrupt (MTI) -- else--if (trap_ctrl.irq_buf(irq_mtime_irq_c) = '1') then -- last condition, so NO IF required trap_ctrl.cause_nxt <= trap_mti_c; end if; end process trap_priority; -- **************************************************************************************************************************** -- Control and Status Registers (CSRs) -- **************************************************************************************************************************** -- Control and Status Registers - Write Data ---------------------------------------------- -- ------------------------------------------------------------------------------------------- csr_write_data: process(execute_engine.i_reg, csr.rdata, rs1_i) variable csr_imm_v : std_ulogic_vector(data_width_c-1 downto 0); begin -- tiny ALU to compute CSR write data -- csr_imm_v := (others => '0'); csr_imm_v(4 downto 0) := execute_engine.i_reg(19 downto 15); -- uimm5 case execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) is when funct3_csrrw_c => csr.wdata <= rs1_i; when funct3_csrrs_c => csr.wdata <= csr.rdata or rs1_i; when funct3_csrrc_c => csr.wdata <= csr.rdata and (not rs1_i); when funct3_csrrwi_c => csr.wdata <= csr_imm_v; when funct3_csrrsi_c => csr.wdata <= csr.rdata or csr_imm_v; when funct3_csrrci_c => csr.wdata <= csr.rdata and (not csr_imm_v); when others => csr.wdata <= (others => '-'); -- undefined end case; end process csr_write_data; -- Control and Status Registers - Write Access -------------------------------------------- -- ------------------------------------------------------------------------------------------- csr_write_access: process(rstn_i, clk_i) variable cause_v : std_ulogic_vector(6 downto 0); begin if (rstn_i = '0') then csr.we <= '0'; -- csr.mstatus_mie <= '0'; csr.mstatus_mpie <= '0'; csr.mstatus_mpp <= '0'; csr.mstatus_tw <= '0'; csr.privilege <= priv_mode_m_c; -- start in MACHINE mode csr.mie_msie <= def_rst_val_c; csr.mie_meie <= def_rst_val_c; csr.mie_mtie <= def_rst_val_c; csr.mie_firqe <= (others => def_rst_val_c); csr.mtvec <= (others => def_rst_val_c); csr.mscratch <= x"19880704"; csr.mepc <= (others => def_rst_val_c); csr.mcause <= (others => def_rst_val_c); csr.mtval <= (others => def_rst_val_c); csr.mip_firq_nclr <= (others => def_rst_val_c); -- csr.pmpcfg <= (others => (others => '0')); csr.pmpaddr <= (others => (others => def_rst_val_c)); -- csr.mhpmevent <= (others => (others => def_rst_val_c)); -- csr.mcounteren_cy <= def_rst_val_c; csr.mcounteren_tm <= def_rst_val_c; csr.mcounteren_ir <= def_rst_val_c; -- csr.mcountinhibit_cy <= def_rst_val_c; csr.mcountinhibit_ir <= def_rst_val_c; csr.mcountinhibit_hpm <= (others => def_rst_val_c); -- csr.fflags <= (others => def_rst_val_c); csr.frm <= (others => def_rst_val_c); -- csr.dcsr_ebreakm <= '0'; csr.dcsr_ebreaku <= '0'; csr.dcsr_step <= '0'; csr.dcsr_prv <= priv_mode_m_c; csr.dcsr_cause <= (others => def_rst_val_c); csr.dpc <= (others => def_rst_val_c); csr.dscratch0 <= (others => def_rst_val_c); -- csr.tdata1_exe <= '0'; csr.tdata2 <= (others => def_rst_val_c); elsif rising_edge(clk_i) then -- write access? -- csr.we <= csr.we_nxt; -- defaults -- csr.mip_firq_nclr <= (others => '1'); -- active low if (CPU_EXTENSION_RISCV_Zicsr = true) then -- -------------------------------------------------------------------------------- -- CSR access by application software -- -------------------------------------------------------------------------------- if (csr.we = '1') and (trap_ctrl.exc_buf(exc_iillegal_c) = '0') then -- manual write access and not illegal instruction -- user floating-point CSRs -- -- -------------------------------------------------------------------- if (CPU_EXTENSION_RISCV_Zfinx = true) then -- floating point CSR class if (csr.addr(11 downto 2) = csr_class_float_c) then if (csr.addr(1 downto 0) = "01") then -- R/W: fflags - floating-point (FPU) exception flags csr.fflags <= csr.wdata(4 downto 0); elsif (csr.addr(1 downto 0) = "10") then -- R/W: frm - floating-point (FPU) rounding mode csr.frm <= csr.wdata(2 downto 0); elsif (csr.addr(1 downto 0) = "11") then -- R/W: fcsr - floating-point (FPU) control/status (frm + fflags) csr.frm <= csr.wdata(7 downto 5); csr.fflags <= csr.wdata(4 downto 0); end if; end if; end if; -- machine trap setup -- -- -------------------------------------------------------------------- if (csr.addr(11 downto 3) = csr_class_setup_c) then -- trap setup CSR class -- R/W: mstatus - machine status register -- if (csr.addr(2 downto 0) = csr_mstatus_c(2 downto 0)) then csr.mstatus_mie <= csr.wdata(03); csr.mstatus_mpie <= csr.wdata(07); if (CPU_EXTENSION_RISCV_U = true) then -- user mode implemented csr.mstatus_mpp <= csr.wdata(11) or csr.wdata(12); -- everything /= U will fall back to M csr.mstatus_tw <= csr.wdata(21); end if; end if; -- R/W: mie - machine interrupt enable register -- if (csr.addr(2 downto 0) = csr_mie_c(2 downto 0)) then csr.mie_msie <= csr.wdata(03); -- machine SW IRQ enable csr.mie_mtie <= csr.wdata(07); -- machine TIMER IRQ enable csr.mie_meie <= csr.wdata(11); -- machine EXT IRQ enable csr.mie_firqe <= csr.wdata(31 downto 16); -- fast interrupt channels 0..15 end if; -- R/W: mtvec - machine trap-handler base address (for ALL exceptions) -- if (csr.addr(2 downto 0) = csr_mtvec_c(2 downto 0)) then csr.mtvec <= csr.wdata(data_width_c-1 downto 2) & "00"; -- mtvec.MODE=0 end if; -- R/W: mcounteren - machine counter enable register -- if (CPU_EXTENSION_RISCV_U = true) then -- this CSR is hardwired to zero if user mode is not implemented if (csr.addr(2 downto 0) = csr_mcounteren_c(2 downto 0)) then csr.mcounteren_cy <= csr.wdata(0); -- enable user-level access to cycle[h] csr.mcounteren_tm <= csr.wdata(1); -- enable user-level access to time[h] csr.mcounteren_ir <= csr.wdata(2); -- enable user-level access to instret[h] end if; end if; end if; -- machine trap handling -- -- -------------------------------------------------------------------- if (csr.addr(11 downto 4) = csr_class_trap_c) then -- machine trap handling CSR class -- R/W: mscratch - machine scratch register -- if (csr.addr(3 downto 0) = csr_mscratch_c(3 downto 0)) then csr.mscratch <= csr.wdata; end if; -- R/W: mepc - machine exception program counter -- if (csr.addr(3 downto 0) = csr_mepc_c(3 downto 0)) then csr.mepc <= csr.wdata; end if; -- R/W: mcause - machine trap cause -- if (csr.addr(3 downto 0) = csr_mcause_c(3 downto 0)) then csr.mcause(csr.mcause'left) <= csr.wdata(31); -- 1: async/interrupt, 0: sync/exception csr.mcause(4 downto 0) <= csr.wdata(4 downto 0); -- identifier end if; -- R/W: mip - machine interrupt pending -- if (csr.addr(3 downto 0) = csr_mip_c(3 downto 0)) then csr.mip_firq_nclr <= csr.wdata(31 downto 16); -- set low to clear according bit (FIRQs only) end if; end if; -- physical memory protection: R/W: pmpcfg* - PMP configuration registers -- -- -------------------------------------------------------------------- if (PMP_NUM_REGIONS > 0) then if (csr.addr(11 downto 2) = csr_class_pmpcfg_c) then -- pmp configuration CSR class for i in 0 to 3 loop -- 3 pmpcfg CSRs if (csr.addr(1 downto 0) = std_ulogic_vector(to_unsigned(i, 2))) then for j in 0 to 3 loop -- 4 entries per CSR if (csr.pmpcfg(i*4+j)(7) = '0') then -- unlocked pmpcfg entry csr.pmpcfg(i*4+j)(0) <= csr.wdata(j*8+0); -- R - read csr.pmpcfg(i*4+j)(1) <= csr.wdata(j*8+1); -- W - write csr.pmpcfg(i*4+j)(2) <= csr.wdata(j*8+2); -- X - execute csr.pmpcfg(i*4+j)(3) <= csr.wdata(j*8+3); -- A_L - mode low [TOR-mode only!] csr.pmpcfg(i*4+j)(4) <= '0'; -- A_H - mode high [TOR-mode only!] csr.pmpcfg(i*4+j)(5) <= '0'; -- reserved csr.pmpcfg(i*4+j)(6) <= '0'; -- reserved csr.pmpcfg(i*4+j)(7) <= csr.wdata(j*8+7); -- L (locked / also enforce in machine-mode) end if; end loop; -- j (entry) end if; end loop; -- i (pmpcfg CSR) end if; end if; -- physical memory protection: R/W: pmpaddr* - PMP address registers -- -- -------------------------------------------------------------------- if (PMP_NUM_REGIONS > 0) then if (csr.addr(11 downto 4) = csr_class_pmpaddr_c) then for i in 0 to PMP_NUM_REGIONS-1 loop if (csr.addr(3 downto 0) = std_ulogic_vector(to_unsigned(i, 4))) and (csr.pmpcfg(i)(7) = '0') then -- unlocked pmpaddr access csr.pmpaddr(i) <= csr.wdata(data_width_c-3 downto index_size_f(PMP_MIN_GRANULARITY)-2); end if; end loop; -- i (PMP regions) end if; end if; -- machine counter setup -- -- -------------------------------------------------------------------- if (csr.addr(11 downto 5) = csr_cnt_setup_c) then -- counter configuration CSR class -- R/W: mcountinhibit - machine counter-inhibit register -- if (csr.addr(4 downto 0) = csr_mcountinhibit_c(4 downto 0)) then csr.mcountinhibit_cy <= csr.wdata(0); -- enable auto-increment of [m]cycle[h] counter csr.mcountinhibit_ir <= csr.wdata(2); -- enable auto-increment of [m]instret[h] counter if (HPM_NUM_CNTS > 0) and (CPU_EXTENSION_RISCV_Zihpm = true) then -- any HPMs available? csr.mcountinhibit_hpm <= csr.wdata(csr.mcountinhibit_hpm'left+3 downto 3); -- enable auto-increment of [m]hpmcounter*[h] counter end if; end if; -- R/W: mhpmevent - machine performance-monitors event selector -- if (HPM_NUM_CNTS > 0) and (CPU_EXTENSION_RISCV_Zihpm = true) then for i in 0 to HPM_NUM_CNTS-1 loop if (csr.addr(4 downto 0) = std_ulogic_vector(to_unsigned(i+3, 5))) then csr.mhpmevent(i) <= csr.wdata(csr.mhpmevent(i)'left downto 0); end if; csr.mhpmevent(i)(hpmcnt_event_never_c) <= '0'; -- would be used for "TIME" end loop; -- i (CSRs) end if; end if; -- debug mode CSRs -- -- -------------------------------------------------------------------- if (CPU_EXTENSION_RISCV_DEBUG = true) then if (csr.addr(11 downto 2) = csr_class_debug_c) then -- debug CSR class -- R/W: dcsr - debug mode control and status register -- if (csr.addr(1 downto 0) = csr_dcsr_c(1 downto 0)) then csr.dcsr_ebreakm <= csr.wdata(15); csr.dcsr_step <= csr.wdata(2); if (CPU_EXTENSION_RISCV_U = true) then -- user mode implemented csr.dcsr_ebreaku <= csr.wdata(12); csr.dcsr_prv <= csr.wdata(1) or csr.wdata(0); -- everything /= U will fall back to M end if; end if; -- R/W: dpc - debug mode program counter -- if (csr.addr(1 downto 0) = csr_dpc_c(1 downto 0)) then csr.dpc <= csr.wdata(data_width_c-1 downto 1) & '0'; end if; -- R/W: dscratch0 - debug mode scratch register 0 -- if (csr.addr(1 downto 0) = csr_dscratch0_c(1 downto 0)) then csr.dscratch0 <= csr.wdata; end if; end if; end if; -- trigger module CSRs - only writable in DEBUG MODE (dmode == 1) -- -- -------------------------------------------------------------------- if (CPU_EXTENSION_RISCV_DEBUG = true) then if (csr.addr(11 downto 4) = csr_class_trigger_c) then -- trigger CSR class if (debug_ctrl.running = '1') then -- actual write only in debug mode -- R/W: tdata1 - match control -- if (csr.addr(3 downto 0) = csr_tdata1_c(3 downto 0)) then csr.tdata1_exe <= csr.wdata(2); end if; -- R/W: tdata2 - address compare -- if (csr.addr(3 downto 0) = csr_tdata2_c(3 downto 0)) then csr.tdata2 <= csr.wdata(data_width_c-1 downto 1) & '0'; end if; end if; end if; end if; -- -------------------------------------------------------------------------------- -- CSR access by hardware -- -------------------------------------------------------------------------------- else -- -------------------------------------------------------------------- -- floating-point (FPU) exception flags -- -------------------------------------------------------------------- if (CPU_EXTENSION_RISCV_Zfinx = true) and (trap_ctrl.exc_buf(exc_iillegal_c) = '0') then -- no illegal instruction csr.fflags <= csr.fflags or fpu_flags_i; -- accumulate flags ("accrued exception flags") end if; -- -------------------------------------------------------------------- -- TRAP ENTER: write machine trap cause, PC and trap value register -- -------------------------------------------------------------------- if (trap_ctrl.env_start_ack = '1') then -- trap handler starting? -- normal trap entry: write mcause, mepc and mtval -- -- -------------------------------------------------------------------- if (CPU_EXTENSION_RISCV_DEBUG = false) or ((trap_ctrl.cause(5) = '0') and (debug_ctrl.running = '0')) then -- trap cause ID code -- csr.mcause(csr.mcause'left) <= trap_ctrl.cause(trap_ctrl.cause'left); -- 1: interrupt, 0: exception csr.mcause(4 downto 0) <= trap_ctrl.cause(4 downto 0); -- identifier -- trap PC -- if (trap_ctrl.cause(trap_ctrl.cause'left) = '1') then -- for INTERRUPTS (async source) csr.mepc <= execute_engine.pc(data_width_c-1 downto 1) & '0'; -- this is the CURRENT pc = interrupted instruction else -- for sync. EXCEPTIONS (sync source) csr.mepc <= execute_engine.pc_last(data_width_c-1 downto 1) & '0'; -- this is the LAST pc = last executed instruction end if; -- trap value -- cause_v := trap_ctrl.cause; cause_v(5) := '0'; -- bit 5 is always zero here (= normal trapping), so we do not need to check that again case cause_v is when trap_ima_c | trap_iba_c => -- misaligned instruction address OR instruction access error csr.mtval <= execute_engine.pc(data_width_c-1 downto 1) & '0'; -- address of faulting instruction when trap_brk_c => -- breakpoint csr.mtval <= execute_engine.pc_last(data_width_c-1 downto 1) & '0'; -- address of breakpoint instruction when trap_lma_c | trap_lbe_c | trap_sma_c | trap_sbe_c => -- misaligned load/store address OR load/store access error csr.mtval <= mar_i; -- faulting data access address when trap_iil_c => -- illegal instruction csr.mtval <= execute_engine.i_reg_last; -- faulting instruction itself when others => -- everything else including all interrupts csr.mtval <= (others => '0'); end case; end if; -- DEBUG MODE (trap) enter: write dpc and dcsr -- -- -------------------------------------------------------------------- if (CPU_EXTENSION_RISCV_DEBUG = true) and (trap_ctrl.cause(5) = '1') and (debug_ctrl.running = '0') then -- trap cause ID code -- csr.dcsr_cause <= trap_ctrl.cause(2 downto 0); -- why did we enter debug mode? -- current privilege mode when debug mode was entered -- csr.dcsr_prv <= csr.privilege; -- trap PC -- if (trap_ctrl.cause(trap_ctrl.cause'left) = '1') then -- for INTERRUPTS (async source) csr.dpc <= execute_engine.pc(data_width_c-1 downto 1) & '0'; -- this is the CURRENT pc = interrupted instruction else -- for sync. EXCEPTIONS (sync source) csr.dpc <= execute_engine.pc_last(data_width_c-1 downto 1) & '0'; -- this is the LAST pc = last executed instruction end if; end if; end if; -- -------------------------------------------------------------------- -- mstatus: context switch -- -------------------------------------------------------------------- -- ENTER: trap handler starting if (trap_ctrl.env_start_ack = '1') then -- trap handler starting? if (CPU_EXTENSION_RISCV_DEBUG = false) or -- normal trapping (debug mode NOT implemented) ((debug_ctrl.running = '0') and (trap_ctrl.cause(5) = '0')) then -- not IN debug mode and not ENTERING debug mode csr.mstatus_mie <= '0'; -- disable interrupts csr.mstatus_mpie <= csr.mstatus_mie; -- buffer previous mie state if (CPU_EXTENSION_RISCV_U = true) then -- user mode implemented csr.privilege <= priv_mode_m_c; -- execute trap in machine mode csr.mstatus_mpp <= csr.privilege; -- backup previous privilege mode end if; end if; -- EXIT: return from trap elsif (trap_ctrl.env_end = '1') then if (CPU_EXTENSION_RISCV_DEBUG = true) and (debug_ctrl.running = '1') then -- return from debug mode if (CPU_EXTENSION_RISCV_U = true) then -- user mode implemented csr.privilege <= csr.dcsr_prv; end if; else -- return from "normal trap" csr.mstatus_mie <= csr.mstatus_mpie; -- restore global IRQ enable flag csr.mstatus_mpie <= '1'; if (CPU_EXTENSION_RISCV_U = true) then -- user mode implemented csr.privilege <= csr.mstatus_mpp; -- go back to previous privilege mode csr.mstatus_mpp <= '0'; -- MRET has to clear mstatus.MPP end if; end if; end if; end if; -- /hardware csr access end if; end if; end process csr_write_access; -- effective privilege mode is M when in debug mode -- csr.privilege_eff <= priv_mode_m_c when (CPU_EXTENSION_RISCV_DEBUG = true) and (debug_ctrl.running = '1') else csr.privilege; -- PMP output to bus unit -- pmp_output: for i in 0 to PMP_NUM_REGIONS-1 generate pmp_addr_o(i)(data_width_c-1 downto index_size_f(PMP_MIN_GRANULARITY)) <= csr.pmpaddr(i); -- physical address pmp_ctrl_o(i) <= csr.pmpcfg(i); end generate; -- Control and Status Registers - Read Access --------------------------------------------- -- ------------------------------------------------------------------------------------------- csr_read_access: process(rstn_i, clk_i) variable csr_addr_v : std_ulogic_vector(11 downto 0); begin if rising_edge(clk_i) then csr.rdata <= (others => '0'); -- default output, unimplemented CSRs are hardwired to zero if (CPU_EXTENSION_RISCV_Zicsr = true) then csr_addr_v(11 downto 10) := csr.addr(11 downto 10); csr_addr_v(09 downto 08) := (others => csr.addr(8)); -- !!! WARNING: MACHINE (11) and USER (00) CSRs ONLY !!! csr_addr_v(07 downto 00) := csr.addr(07 downto 00); case csr_addr_v is -- floating-point CSRs -- -- -------------------------------------------------------------------- when csr_fflags_c => -- fflags (r/w): floating-point (FPU) exception flags if (CPU_EXTENSION_RISCV_Zfinx) then csr.rdata(4 downto 0) <= csr.fflags; else NULL; end if; when csr_frm_c => -- frm (r/w): floating-point (FPU) rounding mode if (CPU_EXTENSION_RISCV_Zfinx) then csr.rdata(2 downto 0) <= csr.frm; else NULL; end if; when csr_fcsr_c => -- fcsr (r/w): floating-point (FPU) control/status (frm + fflags) if (CPU_EXTENSION_RISCV_Zfinx) then csr.rdata(7 downto 0) <= csr.frm & csr.fflags; else NULL; end if; -- machine trap setup -- -- -------------------------------------------------------------------- when csr_mstatus_c => -- mstatus (r/w): machine status register csr.rdata(03) <= csr.mstatus_mie; -- MIE csr.rdata(07) <= csr.mstatus_mpie; -- MPIE csr.rdata(12 downto 11) <= (others => csr.mstatus_mpp); -- MPP: machine previous privilege mode csr.rdata(21) <= csr.mstatus_tw and bool_to_ulogic_f(CPU_EXTENSION_RISCV_U); -- TW -- when csr_mstatush_c => -- mstatush (r/w): machine status register - high, implemented but always zero -- csr.rdata <= (others => '0'); when csr_misa_c => -- misa (r/-): ISA and extensions csr.rdata(00) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_A); -- A CPU extension csr.rdata(01) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_B); -- B CPU extension csr.rdata(02) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_C); -- C CPU extension csr.rdata(04) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_E); -- E CPU extension csr.rdata(08) <= not bool_to_ulogic_f(CPU_EXTENSION_RISCV_E); -- I CPU extension (if not E) csr.rdata(12) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_M); -- M CPU extension csr.rdata(20) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_U); -- U CPU extension csr.rdata(23) <= '1'; -- X CPU extension (non-standard extensions / NEORV32-specific) csr.rdata(30) <= '1'; -- 32-bit architecture (MXL lo) csr.rdata(31) <= '0'; -- 32-bit architecture (MXL hi) when csr_mie_c => -- mie (r/w): machine interrupt-enable register csr.rdata(03) <= csr.mie_msie; -- machine software IRQ enable csr.rdata(07) <= csr.mie_mtie; -- machine timer IRQ enable csr.rdata(11) <= csr.mie_meie; -- machine external IRQ enable csr.rdata(31 downto 16) <= csr.mie_firqe; when csr_mtvec_c => -- mtvec (r/w): machine trap-handler base address (for ALL exceptions) csr.rdata <= csr.mtvec(data_width_c-1 downto 2) & "00"; -- mtvec.MODE=0 when csr_mcounteren_c => -- mcounteren (r/w): machine counter enable register, hardwired to zero if user mode is not implemented csr.rdata(0) <= csr.mcounteren_cy and bool_to_ulogic_f(CPU_EXTENSION_RISCV_U); -- enable user-level access to cycle[h] csr.rdata(1) <= csr.mcounteren_tm and bool_to_ulogic_f(CPU_EXTENSION_RISCV_U); -- enable user-level access to time[h] csr.rdata(2) <= csr.mcounteren_ir and bool_to_ulogic_f(CPU_EXTENSION_RISCV_U); -- enable user-level access to instret[h] -- machine trap handling -- -- -------------------------------------------------------------------- when csr_mscratch_c => -- mscratch (r/w): machine scratch register csr.rdata <= csr.mscratch; when csr_mepc_c => -- mepc (r/w): machine exception program counter csr.rdata <= csr.mepc(data_width_c-1 downto 1) & '0'; when csr_mcause_c => -- mcause (r/w): machine trap cause csr.rdata(31) <= csr.mcause(csr.mcause'left); csr.rdata(csr.mcause'left-1 downto 0) <= csr.mcause(csr.mcause'left-1 downto 0); when csr_mtval_c => -- mtval (r/-): machine bad address or instruction csr.rdata <= csr.mtval; when csr_mip_c => -- mip (r/w): machine interrupt pending csr.rdata(03) <= trap_ctrl.irq_buf(irq_msw_irq_c); csr.rdata(07) <= trap_ctrl.irq_buf(irq_mtime_irq_c); csr.rdata(11) <= trap_ctrl.irq_buf(irq_mext_irq_c); csr.rdata(31 downto 16) <= trap_ctrl.irq_buf(irq_firq_15_c downto irq_firq_0_c); -- physical memory protection - configuration (r/w) -- -- -------------------------------------------------------------------- when csr_pmpcfg0_c => if (PMP_NUM_REGIONS > 0) then if (PMP_NUM_REGIONS > 00) then csr.rdata(07 downto 00) <= csr.pmpcfg(00); end if; if (PMP_NUM_REGIONS > 01) then csr.rdata(15 downto 08) <= csr.pmpcfg(01); end if; if (PMP_NUM_REGIONS > 02) then csr.rdata(23 downto 16) <= csr.pmpcfg(02); end if; if (PMP_NUM_REGIONS > 03) then csr.rdata(31 downto 24) <= csr.pmpcfg(03); end if; else NULL; end if; when csr_pmpcfg1_c => if (PMP_NUM_REGIONS > 4) then if (PMP_NUM_REGIONS > 04) then csr.rdata(07 downto 00) <= csr.pmpcfg(04); end if; if (PMP_NUM_REGIONS > 05) then csr.rdata(15 downto 08) <= csr.pmpcfg(05); end if; if (PMP_NUM_REGIONS > 06) then csr.rdata(23 downto 16) <= csr.pmpcfg(06); end if; if (PMP_NUM_REGIONS > 07) then csr.rdata(31 downto 24) <= csr.pmpcfg(07); end if; else NULL; end if; when csr_pmpcfg2_c => if (PMP_NUM_REGIONS > 8) then if (PMP_NUM_REGIONS > 08) then csr.rdata(07 downto 00) <= csr.pmpcfg(08); end if; if (PMP_NUM_REGIONS > 09) then csr.rdata(15 downto 08) <= csr.pmpcfg(09); end if; if (PMP_NUM_REGIONS > 10) then csr.rdata(23 downto 16) <= csr.pmpcfg(10); end if; if (PMP_NUM_REGIONS > 11) then csr.rdata(31 downto 24) <= csr.pmpcfg(11); end if; else NULL; end if; when csr_pmpcfg3_c => if (PMP_NUM_REGIONS > 12) then if (PMP_NUM_REGIONS > 12) then csr.rdata(07 downto 00) <= csr.pmpcfg(12); end if; if (PMP_NUM_REGIONS > 13) then csr.rdata(15 downto 08) <= csr.pmpcfg(13); end if; if (PMP_NUM_REGIONS > 14) then csr.rdata(23 downto 16) <= csr.pmpcfg(14); end if; if (PMP_NUM_REGIONS > 15) then csr.rdata(31 downto 24) <= csr.pmpcfg(15); end if; else NULL; end if; -- physical memory protection - addresses (r/w) -- -- -------------------------------------------------------------------- when csr_pmpaddr0_c => if (PMP_NUM_REGIONS > 00) then csr.rdata(data_width_c-3 downto index_size_f(PMP_MIN_GRANULARITY)-2) <= csr.pmpaddr(00); else NULL; end if; when csr_pmpaddr1_c => if (PMP_NUM_REGIONS > 01) then csr.rdata(data_width_c-3 downto index_size_f(PMP_MIN_GRANULARITY)-2) <= csr.pmpaddr(01); else NULL; end if; when csr_pmpaddr2_c => if (PMP_NUM_REGIONS > 02) then csr.rdata(data_width_c-3 downto index_size_f(PMP_MIN_GRANULARITY)-2) <= csr.pmpaddr(02); else NULL; end if; when csr_pmpaddr3_c => if (PMP_NUM_REGIONS > 03) then csr.rdata(data_width_c-3 downto index_size_f(PMP_MIN_GRANULARITY)-2) <= csr.pmpaddr(03); else NULL; end if; when csr_pmpaddr4_c => if (PMP_NUM_REGIONS > 04) then csr.rdata(data_width_c-3 downto index_size_f(PMP_MIN_GRANULARITY)-2) <= csr.pmpaddr(04); else NULL; end if; when csr_pmpaddr5_c => if (PMP_NUM_REGIONS > 05) then csr.rdata(data_width_c-3 downto index_size_f(PMP_MIN_GRANULARITY)-2) <= csr.pmpaddr(05); else NULL; end if; when csr_pmpaddr6_c => if (PMP_NUM_REGIONS > 06) then csr.rdata(data_width_c-3 downto index_size_f(PMP_MIN_GRANULARITY)-2) <= csr.pmpaddr(06); else NULL; end if; when csr_pmpaddr7_c => if (PMP_NUM_REGIONS > 07) then csr.rdata(data_width_c-3 downto index_size_f(PMP_MIN_GRANULARITY)-2) <= csr.pmpaddr(07); else NULL; end if; when csr_pmpaddr8_c => if (PMP_NUM_REGIONS > 08) then csr.rdata(data_width_c-3 downto index_size_f(PMP_MIN_GRANULARITY)-2) <= csr.pmpaddr(08); else NULL; end if; when csr_pmpaddr9_c => if (PMP_NUM_REGIONS > 09) then csr.rdata(data_width_c-3 downto index_size_f(PMP_MIN_GRANULARITY)-2) <= csr.pmpaddr(09); else NULL; end if; when csr_pmpaddr10_c => if (PMP_NUM_REGIONS > 10) then csr.rdata(data_width_c-3 downto index_size_f(PMP_MIN_GRANULARITY)-2) <= csr.pmpaddr(10); else NULL; end if; when csr_pmpaddr11_c => if (PMP_NUM_REGIONS > 11) then csr.rdata(data_width_c-3 downto index_size_f(PMP_MIN_GRANULARITY)-2) <= csr.pmpaddr(11); else NULL; end if; when csr_pmpaddr12_c => if (PMP_NUM_REGIONS > 12) then csr.rdata(data_width_c-3 downto index_size_f(PMP_MIN_GRANULARITY)-2) <= csr.pmpaddr(12); else NULL; end if; when csr_pmpaddr13_c => if (PMP_NUM_REGIONS > 13) then csr.rdata(data_width_c-3 downto index_size_f(PMP_MIN_GRANULARITY)-2) <= csr.pmpaddr(13); else NULL; end if; when csr_pmpaddr14_c => if (PMP_NUM_REGIONS > 14) then csr.rdata(data_width_c-3 downto index_size_f(PMP_MIN_GRANULARITY)-2) <= csr.pmpaddr(14); else NULL; end if; when csr_pmpaddr15_c => if (PMP_NUM_REGIONS > 15) then csr.rdata(data_width_c-3 downto index_size_f(PMP_MIN_GRANULARITY)-2) <= csr.pmpaddr(15); else NULL; end if; -- machine counter setup -- -- -------------------------------------------------------------------- when csr_mcountinhibit_c => -- mcountinhibit (r/w): machine counter-inhibit register csr.rdata(0) <= csr.mcountinhibit_cy; -- enable auto-increment of [m]cycle[h] counter csr.rdata(2) <= csr.mcountinhibit_ir; -- enable auto-increment of [m]instret[h] counter if (HPM_NUM_CNTS > 0) and (CPU_EXTENSION_RISCV_Zihpm = true) then -- any HPMs available? csr.rdata(csr.mcountinhibit_hpm'left+3 downto 3) <= csr.mcountinhibit_hpm; -- enable auto-increment of [m]hpmcounterx[h] counter end if; -- machine performance-monitoring event selector (r/w) -- -- -------------------------------------------------------------------- when csr_mhpmevent3_c => if (HPM_NUM_CNTS > 00) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(00); else NULL; end if; when csr_mhpmevent4_c => if (HPM_NUM_CNTS > 01) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(01); else NULL; end if; when csr_mhpmevent5_c => if (HPM_NUM_CNTS > 02) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(02); else NULL; end if; when csr_mhpmevent6_c => if (HPM_NUM_CNTS > 03) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(03); else NULL; end if; when csr_mhpmevent7_c => if (HPM_NUM_CNTS > 04) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(04); else NULL; end if; when csr_mhpmevent8_c => if (HPM_NUM_CNTS > 05) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(05); else NULL; end if; when csr_mhpmevent9_c => if (HPM_NUM_CNTS > 06) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(06); else NULL; end if; when csr_mhpmevent10_c => if (HPM_NUM_CNTS > 07) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(07); else NULL; end if; when csr_mhpmevent11_c => if (HPM_NUM_CNTS > 08) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(08); else NULL; end if; when csr_mhpmevent12_c => if (HPM_NUM_CNTS > 09) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(09); else NULL; end if; when csr_mhpmevent13_c => if (HPM_NUM_CNTS > 10) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(10); else NULL; end if; when csr_mhpmevent14_c => if (HPM_NUM_CNTS > 11) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(11); else NULL; end if; when csr_mhpmevent15_c => if (HPM_NUM_CNTS > 12) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(12); else NULL; end if; when csr_mhpmevent16_c => if (HPM_NUM_CNTS > 13) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(13); else NULL; end if; when csr_mhpmevent17_c => if (HPM_NUM_CNTS > 14) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(14); else NULL; end if; when csr_mhpmevent18_c => if (HPM_NUM_CNTS > 15) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(15); else NULL; end if; when csr_mhpmevent19_c => if (HPM_NUM_CNTS > 16) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(16); else NULL; end if; when csr_mhpmevent20_c => if (HPM_NUM_CNTS > 17) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(17); else NULL; end if; when csr_mhpmevent21_c => if (HPM_NUM_CNTS > 18) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(18); else NULL; end if; when csr_mhpmevent22_c => if (HPM_NUM_CNTS > 19) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(19); else NULL; end if; when csr_mhpmevent23_c => if (HPM_NUM_CNTS > 20) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(20); else NULL; end if; when csr_mhpmevent24_c => if (HPM_NUM_CNTS > 21) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(21); else NULL; end if; when csr_mhpmevent25_c => if (HPM_NUM_CNTS > 22) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(22); else NULL; end if; when csr_mhpmevent26_c => if (HPM_NUM_CNTS > 23) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(23); else NULL; end if; when csr_mhpmevent27_c => if (HPM_NUM_CNTS > 24) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(24); else NULL; end if; when csr_mhpmevent28_c => if (HPM_NUM_CNTS > 25) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(25); else NULL; end if; when csr_mhpmevent29_c => if (HPM_NUM_CNTS > 26) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(26); else NULL; end if; when csr_mhpmevent30_c => if (HPM_NUM_CNTS > 27) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(27); else NULL; end if; when csr_mhpmevent31_c => if (HPM_NUM_CNTS > 28) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmevent_rd(28); else NULL; end if; -- counters and timers -- -- -------------------------------------------------------------------- when csr_cycle_c | csr_mcycle_c => -- [m]cycle (r/w): Cycle counter LOW if (cpu_cnt_lo_width_c > 0) and (CPU_EXTENSION_RISCV_Zicntr) then csr.rdata(cpu_cnt_lo_width_c-1 downto 0) <= csr.mcycle(cpu_cnt_lo_width_c-1 downto 0); else NULL; end if; when csr_cycleh_c | csr_mcycleh_c => -- [m]cycleh (r/w): Cycle counter HIGH if (cpu_cnt_hi_width_c > 0) and (CPU_EXTENSION_RISCV_Zicntr) then csr.rdata(cpu_cnt_hi_width_c-1 downto 0) <= csr.mcycleh(cpu_cnt_hi_width_c-1 downto 0); else NULL; end if; when csr_instret_c | csr_minstret_c => -- [m]instret (r/w): Instructions-retired counter LOW if (cpu_cnt_lo_width_c > 0) and (CPU_EXTENSION_RISCV_Zicntr) then csr.rdata(cpu_cnt_lo_width_c-1 downto 0) <= csr.minstret(cpu_cnt_lo_width_c-1 downto 0); else NULL; end if; when csr_instreth_c | csr_minstreth_c => -- [m]instreth (r/w): Instructions-retired counter HIGH if (cpu_cnt_hi_width_c > 0) and (CPU_EXTENSION_RISCV_Zicntr) then csr.rdata(cpu_cnt_hi_width_c-1 downto 0) <= csr.minstreth(cpu_cnt_hi_width_c-1 downto 0); else NULL; end if; when csr_time_c => -- time (r/-): System time LOW (from MTIME unit) if (CPU_EXTENSION_RISCV_Zicntr) then csr.rdata <= time_i(31 downto 00); else NULL; end if; when csr_timeh_c => -- timeh (r/-): System time HIGH (from MTIME unit) if (CPU_EXTENSION_RISCV_Zicntr) then csr.rdata <= time_i(63 downto 32); else NULL; end if; -- hardware performance counters -- -- -------------------------------------------------------------------- -- low word (r/w) -- when csr_mhpmcounter3_c | csr_hpmcounter3_c => if (HPM_NUM_CNTS > 00) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(00); else NULL; end if; when csr_mhpmcounter4_c | csr_hpmcounter4_c => if (HPM_NUM_CNTS > 01) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(01); else NULL; end if; when csr_mhpmcounter5_c | csr_hpmcounter5_c => if (HPM_NUM_CNTS > 02) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(02); else NULL; end if; when csr_mhpmcounter6_c | csr_hpmcounter6_c => if (HPM_NUM_CNTS > 03) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(03); else NULL; end if; when csr_mhpmcounter7_c | csr_hpmcounter7_c => if (HPM_NUM_CNTS > 04) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(04); else NULL; end if; when csr_mhpmcounter8_c | csr_hpmcounter8_c => if (HPM_NUM_CNTS > 05) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(05); else NULL; end if; when csr_mhpmcounter9_c | csr_hpmcounter9_c => if (HPM_NUM_CNTS > 06) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(06); else NULL; end if; when csr_mhpmcounter10_c | csr_hpmcounter10_c => if (HPM_NUM_CNTS > 07) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(07); else NULL; end if; when csr_mhpmcounter11_c | csr_hpmcounter11_c => if (HPM_NUM_CNTS > 08) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(08); else NULL; end if; when csr_mhpmcounter12_c | csr_hpmcounter12_c => if (HPM_NUM_CNTS > 09) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(09); else NULL; end if; when csr_mhpmcounter13_c | csr_hpmcounter13_c => if (HPM_NUM_CNTS > 10) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(10); else NULL; end if; when csr_mhpmcounter14_c | csr_hpmcounter14_c => if (HPM_NUM_CNTS > 11) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(11); else NULL; end if; when csr_mhpmcounter15_c | csr_hpmcounter15_c => if (HPM_NUM_CNTS > 12) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(12); else NULL; end if; when csr_mhpmcounter16_c | csr_hpmcounter16_c => if (HPM_NUM_CNTS > 13) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(13); else NULL; end if; when csr_mhpmcounter17_c | csr_hpmcounter17_c => if (HPM_NUM_CNTS > 14) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(14); else NULL; end if; when csr_mhpmcounter18_c | csr_hpmcounter18_c => if (HPM_NUM_CNTS > 15) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(15); else NULL; end if; when csr_mhpmcounter19_c | csr_hpmcounter19_c => if (HPM_NUM_CNTS > 16) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(16); else NULL; end if; when csr_mhpmcounter20_c | csr_hpmcounter20_c => if (HPM_NUM_CNTS > 17) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(17); else NULL; end if; when csr_mhpmcounter21_c | csr_hpmcounter21_c => if (HPM_NUM_CNTS > 18) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(18); else NULL; end if; when csr_mhpmcounter22_c | csr_hpmcounter22_c => if (HPM_NUM_CNTS > 19) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(19); else NULL; end if; when csr_mhpmcounter23_c | csr_hpmcounter23_c => if (HPM_NUM_CNTS > 20) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(20); else NULL; end if; when csr_mhpmcounter24_c | csr_hpmcounter24_c => if (HPM_NUM_CNTS > 21) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(21); else NULL; end if; when csr_mhpmcounter25_c | csr_hpmcounter25_c => if (HPM_NUM_CNTS > 22) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(22); else NULL; end if; when csr_mhpmcounter26_c | csr_hpmcounter26_c => if (HPM_NUM_CNTS > 23) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(23); else NULL; end if; when csr_mhpmcounter27_c | csr_hpmcounter27_c => if (HPM_NUM_CNTS > 24) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(24); else NULL; end if; when csr_mhpmcounter28_c | csr_hpmcounter28_c => if (HPM_NUM_CNTS > 25) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(25); else NULL; end if; when csr_mhpmcounter29_c | csr_hpmcounter29_c => if (HPM_NUM_CNTS > 26) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(26); else NULL; end if; when csr_mhpmcounter30_c | csr_hpmcounter30_c => if (HPM_NUM_CNTS > 27) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(27); else NULL; end if; when csr_mhpmcounter31_c | csr_hpmcounter31_c => if (HPM_NUM_CNTS > 28) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounter_rd(28); else NULL; end if; -- high word (r/w) -- when csr_mhpmcounter3h_c | csr_hpmcounter3h_c => if (HPM_NUM_CNTS > 00) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(00); else NULL; end if; when csr_mhpmcounter4h_c | csr_hpmcounter4h_c => if (HPM_NUM_CNTS > 01) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(01); else NULL; end if; when csr_mhpmcounter5h_c | csr_hpmcounter5h_c => if (HPM_NUM_CNTS > 02) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(02); else NULL; end if; when csr_mhpmcounter6h_c | csr_hpmcounter6h_c => if (HPM_NUM_CNTS > 03) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(03); else NULL; end if; when csr_mhpmcounter7h_c | csr_hpmcounter7h_c => if (HPM_NUM_CNTS > 04) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(04); else NULL; end if; when csr_mhpmcounter8h_c | csr_hpmcounter8h_c => if (HPM_NUM_CNTS > 05) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(05); else NULL; end if; when csr_mhpmcounter9h_c | csr_hpmcounter9h_c => if (HPM_NUM_CNTS > 06) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(06); else NULL; end if; when csr_mhpmcounter10h_c | csr_hpmcounter10h_c => if (HPM_NUM_CNTS > 07) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(07); else NULL; end if; when csr_mhpmcounter11h_c | csr_hpmcounter11h_c => if (HPM_NUM_CNTS > 08) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(08); else NULL; end if; when csr_mhpmcounter12h_c | csr_hpmcounter12h_c => if (HPM_NUM_CNTS > 09) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(09); else NULL; end if; when csr_mhpmcounter13h_c | csr_hpmcounter13h_c => if (HPM_NUM_CNTS > 10) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(10); else NULL; end if; when csr_mhpmcounter14h_c | csr_hpmcounter14h_c => if (HPM_NUM_CNTS > 11) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(11); else NULL; end if; when csr_mhpmcounter15h_c | csr_hpmcounter15h_c => if (HPM_NUM_CNTS > 12) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(12); else NULL; end if; when csr_mhpmcounter16h_c | csr_hpmcounter16h_c => if (HPM_NUM_CNTS > 13) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(13); else NULL; end if; when csr_mhpmcounter17h_c | csr_hpmcounter17h_c => if (HPM_NUM_CNTS > 14) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(14); else NULL; end if; when csr_mhpmcounter18h_c | csr_hpmcounter18h_c => if (HPM_NUM_CNTS > 15) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(15); else NULL; end if; when csr_mhpmcounter19h_c | csr_hpmcounter19h_c => if (HPM_NUM_CNTS > 16) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(16); else NULL; end if; when csr_mhpmcounter20h_c | csr_hpmcounter20h_c => if (HPM_NUM_CNTS > 17) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(17); else NULL; end if; when csr_mhpmcounter21h_c | csr_hpmcounter21h_c => if (HPM_NUM_CNTS > 18) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(18); else NULL; end if; when csr_mhpmcounter22h_c | csr_hpmcounter22h_c => if (HPM_NUM_CNTS > 19) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(19); else NULL; end if; when csr_mhpmcounter23h_c | csr_hpmcounter23h_c => if (HPM_NUM_CNTS > 20) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(20); else NULL; end if; when csr_mhpmcounter24h_c | csr_hpmcounter24h_c => if (HPM_NUM_CNTS > 21) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(21); else NULL; end if; when csr_mhpmcounter25h_c | csr_hpmcounter25h_c => if (HPM_NUM_CNTS > 22) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(22); else NULL; end if; when csr_mhpmcounter26h_c | csr_hpmcounter26h_c => if (HPM_NUM_CNTS > 23) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(23); else NULL; end if; when csr_mhpmcounter27h_c | csr_hpmcounter27h_c => if (HPM_NUM_CNTS > 24) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(24); else NULL; end if; when csr_mhpmcounter28h_c | csr_hpmcounter28h_c => if (HPM_NUM_CNTS > 25) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(25); else NULL; end if; when csr_mhpmcounter29h_c | csr_hpmcounter29h_c => if (HPM_NUM_CNTS > 26) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(26); else NULL; end if; when csr_mhpmcounter30h_c | csr_hpmcounter30h_c => if (HPM_NUM_CNTS > 27) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(27); else NULL; end if; when csr_mhpmcounter31h_c | csr_hpmcounter31h_c => if (HPM_NUM_CNTS > 28) and (CPU_EXTENSION_RISCV_Zihpm) then csr.rdata <= csr.mhpmcounterh_rd(28); else NULL; end if; -- machine information registers -- -- -------------------------------------------------------------------- -- when csr_mvendorid_c => csr.rdata <= (others => '0'); -- mvendorid (r/-): vendor ID, implemented but always zero when csr_marchid_c => csr.rdata(4 downto 0) <= "10011"; -- marchid (r/-): arch ID - official RISC-V open-source arch ID when csr_mimpid_c => csr.rdata <= hw_version_c; -- mimpid (r/-): implementation ID -- NEORV32 hardware version when csr_mhartid_c => csr.rdata <= std_ulogic_vector(to_unsigned(HW_THREAD_ID, 32)); -- mhartid (r/-): hardware thread ID -- when csr_mconfigptr_c => csr.rdata <= (others => '0'); -- mconfigptr (r/-): machine configuration pointer register, implemented but always zero -- debug mode CSRs -- -- -------------------------------------------------------------------- when csr_dcsr_c => if (CPU_EXTENSION_RISCV_DEBUG) then csr.rdata <= csr.dcsr_rd; else NULL; end if; -- dcsr (r/w): debug mode control and status when csr_dpc_c => if (CPU_EXTENSION_RISCV_DEBUG) then csr.rdata <= csr.dpc; else NULL; end if; -- dpc (r/w): debug mode program counter when csr_dscratch0_c => if (CPU_EXTENSION_RISCV_DEBUG) then csr.rdata <= csr.dscratch0; else NULL; end if; -- dscratch0 (r/w): debug mode scratch register 0 -- trigger module CSRs -- -- -------------------------------------------------------------------- -- when csr_tselect_c => if (CPU_EXTENSION_RISCV_DEBUG) then csr.rdata <= (others => '0'); else NULL; end if; -- tselect (r/w): always zero = only 1 trigger available when csr_tdata1_c => if (CPU_EXTENSION_RISCV_DEBUG) then csr.rdata <= csr.tdata1_rd; else NULL; end if; -- tdata1 (r/w): match control when csr_tdata2_c => if (CPU_EXTENSION_RISCV_DEBUG) then csr.rdata <= csr.tdata2; else NULL; end if; -- tdata2 (r/w): address-compare -- when csr_tdata3_c => if (CPU_EXTENSION_RISCV_DEBUG) then csr.rdata <= (others => '0'); else NULL; end if; -- tdata3 (r/w): implemented but always zero when csr_tinfo_c => if (CPU_EXTENSION_RISCV_DEBUG) then csr.rdata <= x"00000004"; else NULL; end if; -- tinfo (r/w): address-match trigger only -- when csr_tcontrol_c => if (CPU_EXTENSION_RISCV_DEBUG) then csr.rdata <= (others => '0'); else NULL; end if; -- tcontrol (r/w): implemented but always zero -- when csr_mcontext_c => if (CPU_EXTENSION_RISCV_DEBUG) then csr.rdata <= (others => '0'); else NULL; end if; -- mcontext (r/w): implemented but always zero -- when csr_scontext_c => if (CPU_EXTENSION_RISCV_DEBUG) then csr.rdata <= (others => '0'); else NULL; end if; -- scontext (r/w): implemented but always zero -- NEORV32-specific (RISC-V "custom") read-only CSRs -- -- -------------------------------------------------------------------- -- machine extended ISA extensions information -- when csr_mxisa_c => -- ISA extended (sub-)extensions -- csr.rdata(00) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zicsr); -- Zicsr: privileged architecture (!!!) csr.rdata(01) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zifencei); -- Zifencei: instruction stream sync. csr.rdata(02) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zmmul); -- Zmmul: mul/div csr.rdata(03) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zxcfu); -- Zxcfu: custom RISC-V instructions csr.rdata(04) <= '0'; -- reserved csr.rdata(05) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zfinx); -- Zfinx: FPU using x registers, "F-alternative" csr.rdata(06) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zicntr) and bool_to_ulogic_f(boolean(CPU_CNT_WIDTH /= 64)); -- Zxscnt: reduced-size CPU counters (from Zicntr) csr.rdata(07) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zicntr); -- Zicntr: base instructions, cycle and time CSRs csr.rdata(08) <= bool_to_ulogic_f(boolean(PMP_NUM_REGIONS > 0)); -- PMP: physical memory protection (Zspmp) csr.rdata(09) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zihpm); -- Zihpm: hardware performance monitors csr.rdata(10) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_DEBUG); -- RISC-V debug mode -- tuning options -- csr.rdata(30) <= bool_to_ulogic_f(FAST_MUL_EN); -- DSP-based multiplication (M extensions only) csr.rdata(31) <= bool_to_ulogic_f(FAST_SHIFT_EN); -- parallel logic for shifts (barrel shifters) -- undefined/unavailable -- -- -------------------------------------------------------------------- when others => NULL; -- not implemented, read as zero end case; end if; end if; end process csr_read_access; -- CSR read data output -- csr_rdata_o <= csr.rdata; -- **************************************************************************************************************************** -- CPU Counters / HPMs (CSRs) -- **************************************************************************************************************************** -- Control and Status Registers - Counters ------------------------------------------------ -- ------------------------------------------------------------------------------------------- csr_counters: process(rstn_i, clk_i) begin -- Counter CSRs (each counter is split into two 32-bit counters - coupled via an MSB overflow FF) if (rstn_i = '0') then csr.mcycle <= (others => def_rst_val_c); csr.mcycle_ovfl <= (others => def_rst_val_c); csr.mcycleh <= (others => def_rst_val_c); csr.minstret <= (others => def_rst_val_c); csr.minstret_ovfl <= (others => def_rst_val_c); csr.minstreth <= (others => def_rst_val_c); csr.mhpmcounter <= (others => (others => def_rst_val_c)); csr.mhpmcounter_ovfl <= (others => (others => def_rst_val_c)); csr.mhpmcounterh <= (others => (others => def_rst_val_c)); elsif rising_edge(clk_i) then -- [m]cycle -- if (cpu_cnt_lo_width_c > 0) and (CPU_EXTENSION_RISCV_Zicntr = true) then csr.mcycle_ovfl(0) <= csr.mcycle_nxt(csr.mcycle_nxt'left) and (not csr.mcountinhibit_cy); if (csr.we = '1') and (csr.addr = csr_mcycle_c) then -- write access csr.mcycle(cpu_cnt_lo_width_c-1 downto 0) <= csr.wdata(cpu_cnt_lo_width_c-1 downto 0); elsif (csr.mcountinhibit_cy = '0') and (cnt_event(hpmcnt_event_cy_c) = '1') and (debug_ctrl.running = '0') then -- non-inhibited automatic update and not in debug mode csr.mcycle(cpu_cnt_lo_width_c-1 downto 0) <= csr.mcycle_nxt(cpu_cnt_lo_width_c-1 downto 0); end if; else csr.mcycle_ovfl <= (others => '-'); csr.mcycle <= (others => '-'); end if; -- [m]cycleh -- if (cpu_cnt_hi_width_c > 0) and (CPU_EXTENSION_RISCV_Zicntr = true) then if (csr.we = '1') and (csr.addr = csr_mcycleh_c) then -- write access csr.mcycleh(cpu_cnt_hi_width_c-1 downto 0) <= csr.wdata(cpu_cnt_hi_width_c-1 downto 0); else -- automatic update csr.mcycleh(cpu_cnt_hi_width_c-1 downto 0) <= std_ulogic_vector(unsigned(csr.mcycleh(cpu_cnt_hi_width_c-1 downto 0)) + unsigned(csr.mcycle_ovfl)); end if; else csr.mcycleh <= (others => '-'); end if; -- [m]instret -- if (cpu_cnt_lo_width_c > 0) and (CPU_EXTENSION_RISCV_Zicntr = true) then csr.minstret_ovfl(0) <= csr.minstret_nxt(csr.minstret_nxt'left) and (not csr.mcountinhibit_ir); if (csr.we = '1') and (csr.addr = csr_minstret_c) then -- write access csr.minstret(cpu_cnt_lo_width_c-1 downto 0) <= csr.wdata(cpu_cnt_lo_width_c-1 downto 0); elsif (csr.mcountinhibit_ir = '0') and (cnt_event(hpmcnt_event_ir_c) = '1') and (debug_ctrl.running = '0') then -- non-inhibited automatic update and not in debug mode csr.minstret(cpu_cnt_lo_width_c-1 downto 0) <= csr.minstret_nxt(cpu_cnt_lo_width_c-1 downto 0); end if; else csr.minstret_ovfl <= (others => '-'); csr.minstret <= (others => '-'); end if; -- [m]instreth -- if (cpu_cnt_hi_width_c > 0) and (CPU_EXTENSION_RISCV_Zicntr = true) then if (csr.we = '1') and (csr.addr = csr_minstreth_c) then -- write access csr.minstreth(cpu_cnt_hi_width_c-1 downto 0) <= csr.wdata(cpu_cnt_hi_width_c-1 downto 0); else -- automatic update csr.minstreth(cpu_cnt_hi_width_c-1 downto 0) <= std_ulogic_vector(unsigned(csr.minstreth(cpu_cnt_hi_width_c-1 downto 0)) + unsigned(csr.minstret_ovfl)); end if; else csr.minstreth <= (others => '-'); end if; -- [machine] hardware performance monitors (counters) -- for i in 0 to HPM_NUM_CNTS-1 loop -- [m]hpmcounter* -- if (hpm_cnt_lo_width_c > 0) and (CPU_EXTENSION_RISCV_Zihpm = true) then csr.mhpmcounter_ovfl(i)(0) <= csr.mhpmcounter_nxt(i)(csr.mhpmcounter_nxt(i)'left) and (not csr.mcountinhibit_hpm(i)); if (csr.we = '1') and (csr.addr = std_ulogic_vector(unsigned(csr_mhpmcounter3_c) + i)) then -- write access csr.mhpmcounter(i)(hpm_cnt_lo_width_c-1 downto 0) <= csr.wdata(hpm_cnt_lo_width_c-1 downto 0); elsif (csr.mcountinhibit_hpm(i) = '0') and (hpmcnt_trigger(i) = '1') then -- non-inhibited automatic update csr.mhpmcounter(i)(hpm_cnt_lo_width_c-1 downto 0) <= csr.mhpmcounter_nxt(i)(hpm_cnt_lo_width_c-1 downto 0); end if; else csr.mhpmcounter_ovfl(i) <= (others => '-'); csr.mhpmcounter(i) <= (others => '-'); end if; -- [m]hpmcounter*h -- if (hpm_cnt_hi_width_c > 0) and (CPU_EXTENSION_RISCV_Zihpm = true) then if (csr.we = '1') and (csr.addr = std_ulogic_vector(unsigned(csr_mhpmcounter3h_c) + i)) then -- write access csr.mhpmcounterh(i)(hpm_cnt_hi_width_c-1 downto 0) <= csr.wdata(hpm_cnt_hi_width_c-1 downto 0); else -- automatic update csr.mhpmcounterh(i)(hpm_cnt_hi_width_c-1 downto 0) <= std_ulogic_vector(unsigned(csr.mhpmcounterh(i)(hpm_cnt_hi_width_c-1 downto 0)) + unsigned(csr.mhpmcounter_ovfl(i))); end if; else csr.mhpmcounterh(i) <= (others => '-'); end if; end loop; -- i end if; end process csr_counters; -- mcycle & minstret increment LOW -- csr.mcycle_nxt <= std_ulogic_vector(unsigned('0' & csr.mcycle) + 1); csr.minstret_nxt <= std_ulogic_vector(unsigned('0' & csr.minstret) + 1); -- hpm counter increment LOW -- hmp_cnt_lo_inc: for i in 0 to HPM_NUM_CNTS-1 generate csr.mhpmcounter_nxt(i) <= std_ulogic_vector(unsigned('0' & csr.mhpmcounter(i)) + 1); end generate; -- hpm counter read -- hpm_rd_dummy: process(csr) begin csr.mhpmevent_rd <= (others => (others => '0')); csr.mhpmcounter_rd <= (others => (others => '0')); csr.mhpmcounterh_rd <= (others => (others => '0')); if (HPM_NUM_CNTS /= 0) and (CPU_EXTENSION_RISCV_Zihpm = true) then for i in 0 to HPM_NUM_CNTS-1 loop csr.mhpmevent_rd(i)(hpmcnt_event_size_c-1 downto 0) <= csr.mhpmevent(i); if (hpm_cnt_lo_width_c > 0) then csr.mhpmcounter_rd(i)(hpm_cnt_lo_width_c-1 downto 0) <= csr.mhpmcounter(i)(hpm_cnt_lo_width_c-1 downto 0); end if; if (hpm_cnt_hi_width_c > 0) then csr.mhpmcounterh_rd(i)(hpm_cnt_hi_width_c-1 downto 0) <= csr.mhpmcounterh(i)(hpm_cnt_hi_width_c-1 downto 0); end if; end loop; -- i end if; end process hpm_rd_dummy; -- Hardware Performance Monitor - Counter Event Control ----------------------------------- -- ------------------------------------------------------------------------------------------- hpmcnt_ctrl: process(clk_i) begin if rising_edge(clk_i) then -- enable selected triggers by ANDing actual events and according CSR configuration bits -- -- OR everything to see if counter should increment -- hpmcnt_trigger <= (others => '0'); -- default if (HPM_NUM_CNTS /= 0) then for i in 0 to HPM_NUM_CNTS-1 loop -- do not increment if CPU is in debug mode -- hpmcnt_trigger(i) <= or_reduce_f(cnt_event and csr.mhpmevent(i)(cnt_event'left downto 0)) and (not debug_ctrl.running); end loop; -- i end if; end if; end process hpmcnt_ctrl; -- counter event trigger - RISC-V-specific -- cnt_event(hpmcnt_event_cy_c) <= not execute_engine.sleep; -- active cycle cnt_event(hpmcnt_event_never_c) <= '0'; -- "never" cnt_event(hpmcnt_event_ir_c) <= '1' when (execute_engine.state = EXECUTE) else '0'; -- (any) retired instruction -- counter event trigger - custom / NEORV32-specific -- cnt_event(hpmcnt_event_cir_c) <= '1' when (execute_engine.state = EXECUTE) and (execute_engine.is_ci = '1') else '0'; -- retired compressed instruction cnt_event(hpmcnt_event_wait_if_c) <= '1' when (fetch_engine.state = IFETCH_ISSUE) and (fetch_engine.state_prev = IFETCH_ISSUE) else '0'; -- instruction fetch memory wait cycle cnt_event(hpmcnt_event_wait_ii_c) <= '1' when (execute_engine.state = DISPATCH) and (execute_engine.state_prev = DISPATCH) else '0'; -- instruction issue wait cycle cnt_event(hpmcnt_event_wait_mc_c) <= '1' when (execute_engine.state = ALU_WAIT) else '0'; -- multi-cycle alu-operation wait cycle cnt_event(hpmcnt_event_load_c) <= '1' when (ctrl(ctrl_bus_rd_c) = '1') else '0'; -- load operation cnt_event(hpmcnt_event_store_c) <= '1' when (ctrl(ctrl_bus_wr_c) = '1') else '0'; -- store operation cnt_event(hpmcnt_event_wait_ls_c) <= '1' when (execute_engine.state = LOADSTORE_2) and (execute_engine.state_prev = LOADSTORE_2) else '0'; -- load/store memory wait cycle cnt_event(hpmcnt_event_jump_c) <= '1' when (execute_engine.state = BRANCH) and (execute_engine.i_reg(instr_opcode_lsb_c+2) = '1') else '0'; -- jump (unconditional) cnt_event(hpmcnt_event_branch_c) <= '1' when (execute_engine.state = BRANCH) and (execute_engine.i_reg(instr_opcode_lsb_c+2) = '0') else '0'; -- branch (conditional, taken or not taken) cnt_event(hpmcnt_event_tbranch_c) <= '1' when (execute_engine.state = BRANCH) and (execute_engine.i_reg(instr_opcode_lsb_c+2) = '0') and (execute_engine.branch_taken = '1') else '0'; -- taken branch (conditional) cnt_event(hpmcnt_event_trap_c) <= '1' when (trap_ctrl.env_start_ack = '1') else '0'; -- entered trap cnt_event(hpmcnt_event_illegal_c) <= '1' when (trap_ctrl.env_start_ack = '1') and (trap_ctrl.cause = trap_iil_c) else '0'; -- illegal operation -- **************************************************************************************************************************** -- CPU Debug Mode (Part of the On-Chip Debugger) -- **************************************************************************************************************************** -- Debug Control -------------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- debug_control: process(rstn_i, clk_i) begin if (rstn_i = '0') then debug_ctrl.state <= DEBUG_OFFLINE; debug_ctrl.ext_halt_req <= '0'; elsif rising_edge(clk_i) then if (CPU_EXTENSION_RISCV_DEBUG = true) then -- external halt request (from Debug Module) -- debug_ctrl.ext_halt_req <= db_halt_req_i; -- state machine -- case debug_ctrl.state is when DEBUG_OFFLINE => -- not in debug mode, waiting for entering request if (debug_ctrl.trig_halt = '1') or -- external request (from DM) (debug_ctrl.trig_break = '1') or -- ebreak instruction (debug_ctrl.trig_hw = '1') or -- hardware trigger module (debug_ctrl.trig_step = '1') then -- single-stepping mode debug_ctrl.state <= DEBUG_PENDING; end if; when DEBUG_PENDING => -- waiting to start debug mode if (trap_ctrl.env_start_ack = '1') and (trap_ctrl.cause(5) = '1') then -- processing trap entry into debug mode debug_ctrl.state <= DEBUG_ONLINE; end if; when DEBUG_ONLINE => -- we are in debug mode if (debug_ctrl.dret = '1') then -- DRET instruction debug_ctrl.state <= DEBUG_EXIT; end if; when DEBUG_EXIT => -- leaving debug mode if (execute_engine.state = TRAP_EXECUTE) then -- processing trap exit debug_ctrl.state <= DEBUG_OFFLINE; end if; when others => -- undefined debug_ctrl.state <= DEBUG_OFFLINE; end case; else -- debug mode NOT implemented debug_ctrl.state <= DEBUG_OFFLINE; debug_ctrl.ext_halt_req <= '0'; end if; end if; end process debug_control; -- state decoding -- debug_ctrl.pending <= '1' when (debug_ctrl.state = DEBUG_PENDING) and (CPU_EXTENSION_RISCV_DEBUG = true) else '0'; debug_ctrl.running <= '1' when ((debug_ctrl.state = DEBUG_ONLINE) or (debug_ctrl.state = DEBUG_EXIT)) and (CPU_EXTENSION_RISCV_DEBUG = true) else '0'; -- entry debug mode triggers -- debug_ctrl.trig_hw <= hw_trigger_fire and (not debug_ctrl.running); -- enter debug mode by HW trigger module request debug_ctrl.trig_break <= trap_ctrl.break_point and (debug_ctrl.running or -- re-enter debug mode (( csr.privilege) and csr.dcsr_ebreakm) or -- enabled goto-debug-mode in machine mode on "ebreak" ((not csr.privilege) and csr.dcsr_ebreaku)); -- enabled goto-debug-mode in user mode on "ebreak" debug_ctrl.trig_halt <= debug_ctrl.ext_halt_req and (not debug_ctrl.running); -- external halt request (if not halted already) debug_ctrl.trig_step <= csr.dcsr_step and (not debug_ctrl.running); -- single-step mode (trigger when NOT CURRENTLY in debug mode) -- Debug Control and Status Register (dcsr) - Read-Back ----------------------------------- -- ------------------------------------------------------------------------------------------- csr.dcsr_rd(31 downto 28) <= "0100"; -- xdebugver: external debug support compatible to spec csr.dcsr_rd(27 downto 16) <= (others => '0'); -- reserved csr.dcsr_rd(15) <= csr.dcsr_ebreakm; -- ebreakm: what happens on ebreak in m-mode? (normal trap OR debug-enter) csr.dcsr_rd(14) <= '0'; -- ebreakh: hypervisor mode not implemented csr.dcsr_rd(13) <= '0'; -- ebreaks: supervisor mode not implemented csr.dcsr_rd(12) <= csr.dcsr_ebreaku when (CPU_EXTENSION_RISCV_U = true) else '0'; -- ebreaku: what happens on ebreak in u-mode? (normal trap OR debug-enter) csr.dcsr_rd(11) <= '0'; -- stepie: interrupts are disabled during single-stepping csr.dcsr_rd(10) <= '1'; -- stopcount: standard counters and HPMs are stopped when in debug mode csr.dcsr_rd(09) <= '0'; -- stoptime: timers increment as usual csr.dcsr_rd(08 downto 06) <= csr.dcsr_cause; -- debug mode entry cause csr.dcsr_rd(05) <= '0'; -- reserved csr.dcsr_rd(04) <= '0'; -- mprven: mstatus.mprv is ignored in debug mode csr.dcsr_rd(03) <= '0'; -- nmip: no pending non-maskable interrupt csr.dcsr_rd(02) <= csr.dcsr_step; -- step: single-step mode csr.dcsr_rd(01 downto 00) <= (others => csr.dcsr_prv); -- prv: privilege mode when debug mode was entered -- **************************************************************************************************************************** -- Hardware Trigger Module (Part of the On-Chip Debugger) -- **************************************************************************************************************************** -- trigger to enter debug-mode: instruction address match (fire AFTER execution) -- hw_trigger_fire <= '1' when (CPU_EXTENSION_RISCV_DEBUG = true) and (csr.tdata1_exe = '1') and (csr.tdata2(data_width_c-1 downto 1) = execute_engine.pc(data_width_c-1 downto 1)) else '0'; -- Match Control CSR (mcontrol @ tdata1) - Read-Back -------------------------------------- -- ------------------------------------------------------------------------------------------- csr.tdata1_rd(31 downto 28) <= "0010"; -- type: address(/data) match trigger csr.tdata1_rd(27) <= '1'; -- dmode: only debug-mode can write tdata* registers csr.tdata1_rd(26 downto 21) <= "000000"; -- maskmax: only exact values csr.tdata1_rd(20) <= '0'; -- hit: feature not implemented csr.tdata1_rd(19) <= '0'; -- select: fire on address match csr.tdata1_rd(18) <= '1'; -- timing: trigger **after** executing the triggering instruction csr.tdata1_rd(17 downto 16) <= "00"; -- sizelo: match against an access of any size csr.tdata1_rd(15 downto 12) <= "0001"; -- action: enter debug mode on trigger csr.tdata1_rd(11) <= '0'; -- chain: chaining not supported - there is only one trigger csr.tdata1_rd(10 downto 07) <= "0000"; -- match: only full-address-match csr.tdata1_rd(6) <= '1'; -- m: trigger enabled when in machine mode csr.tdata1_rd(5) <= '0'; -- h: hypervisor mode not supported csr.tdata1_rd(4) <= '0'; -- s: supervisor mode not supported csr.tdata1_rd(3) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_U); -- u: trigger enabled when in user mode csr.tdata1_rd(2) <= csr.tdata1_exe; -- execute: enable trigger csr.tdata1_rd(1) <= '0'; -- store: store address or data matching not supported csr.tdata1_rd(0) <= '0'; -- load: load address or data matching not supported end neorv32_cpu_control_rtl;
Go to most recent revision | Compare with Previous | Blame | View Log