URL
https://opencores.org/ocsvn/neorv32/neorv32/trunk
Subversion Repositories neorv32
[/] [neorv32/] [trunk/] [rtl/] [core/] [neorv32_spi.vhd] - Rev 66
Go to most recent revision | Compare with Previous | Blame | View Log
-- ################################################################################################# -- # << NEORV32 - Serial Peripheral Interface Controller (SPI) >> # -- # ********************************************************************************************* # -- # Frame format: 8/16/24/32-bit receive/transmit data, always MSB first, 2 clock modes, # -- # 8 pre-scaled clocks (derived from system clock), 8 dedicated chip-select lines (low-active). # -- # Interrupt: SPI_transfer_done # -- # ********************************************************************************************* # -- # BSD 3-Clause License # -- # # -- # Copyright (c) 2021, Stephan Nolting. All rights reserved. # -- # # -- # Redistribution and use in source and binary forms, with or without modification, are # -- # permitted provided that the following conditions are met: # -- # # -- # 1. Redistributions of source code must retain the above copyright notice, this list of # -- # conditions and the following disclaimer. # -- # # -- # 2. Redistributions in binary form must reproduce the above copyright notice, this list of # -- # conditions and the following disclaimer in the documentation and/or other materials # -- # provided with the distribution. # -- # # -- # 3. Neither the name of the copyright holder nor the names of its contributors may be used to # -- # endorse or promote products derived from this software without specific prior written # -- # permission. # -- # # -- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS # -- # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # -- # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # -- # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # -- # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # -- # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED # -- # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # -- # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # -- # OF THE POSSIBILITY OF SUCH DAMAGE. # -- # ********************************************************************************************* # -- # The NEORV32 Processor - https://github.com/stnolting/neorv32 (c) Stephan Nolting # -- ################################################################################################# library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library neorv32; use neorv32.neorv32_package.all; entity neorv32_spi is port ( -- host access -- clk_i : in std_ulogic; -- global clock line addr_i : in std_ulogic_vector(31 downto 0); -- address rden_i : in std_ulogic; -- read enable wren_i : in std_ulogic; -- write enable data_i : in std_ulogic_vector(31 downto 0); -- data in data_o : out std_ulogic_vector(31 downto 0); -- data out ack_o : out std_ulogic; -- transfer acknowledge -- clock generator -- clkgen_en_o : out std_ulogic; -- enable clock generator clkgen_i : in std_ulogic_vector(07 downto 0); -- com lines -- spi_sck_o : out std_ulogic; -- SPI serial clock spi_sdo_o : out std_ulogic; -- controller data out, peripheral data in spi_sdi_i : in std_ulogic; -- controller data in, peripheral data out spi_csn_o : out std_ulogic_vector(07 downto 0); -- SPI CS -- interrupt -- irq_o : out std_ulogic -- transmission done interrupt ); end neorv32_spi; architecture neorv32_spi_rtl of neorv32_spi is -- IO space: module base address -- constant hi_abb_c : natural := index_size_f(io_size_c)-1; -- high address boundary bit constant lo_abb_c : natural := index_size_f(spi_size_c); -- low address boundary bit -- control register -- constant ctrl_cs0_c : natural := 0; -- r/w: spi CS 0 constant ctrl_cs1_c : natural := 1; -- r/w: spi CS 1 constant ctrl_cs2_c : natural := 2; -- r/w: spi CS 2 constant ctrl_cs3_c : natural := 3; -- r/w: spi CS 3 constant ctrl_cs4_c : natural := 4; -- r/w: spi CS 4 constant ctrl_cs5_c : natural := 5; -- r/w: spi CS 5 constant ctrl_cs6_c : natural := 6; -- r/w: spi CS 6 constant ctrl_cs7_c : natural := 7; -- r/w: spi CS 7 -- constant ctrl_en_c : natural := 8; -- r/w: spi enable constant ctrl_cpha_c : natural := 9; -- r/w: spi clock phase constant ctrl_prsc0_c : natural := 10; -- r/w: spi prescaler select bit 0 constant ctrl_prsc1_c : natural := 11; -- r/w: spi prescaler select bit 1 constant ctrl_prsc2_c : natural := 12; -- r/w: spi prescaler select bit 2 constant ctrl_size0_c : natural := 13; -- r/w: data size lsb (00: 8-bit, 01: 16-bit) constant ctrl_size1_c : natural := 14; -- r/w: data size msb (10: 24-bit, 11: 32-bit) constant ctrl_cpol_c : natural := 15; -- r/w: spi clock polarity -- constant ctrl_busy_c : natural := 31; -- r/-: spi transceiver is busy -- signal ctrl : std_ulogic_vector(15 downto 0); -- access control -- signal acc_en : std_ulogic; -- module access enable signal addr : std_ulogic_vector(31 downto 0); -- access address signal wren : std_ulogic; -- word write enable signal rden : std_ulogic; -- read enable -- clock generator -- signal spi_clk_en : std_ulogic; -- spi transceiver -- type rtx_engine_t is record state : std_ulogic_vector(02 downto 0); busy : std_ulogic; start : std_ulogic; sreg : std_ulogic_vector(31 downto 0); bitcnt : std_ulogic_vector(05 downto 0); bytecnt : std_ulogic_vector(02 downto 0); sdi_sync : std_ulogic_vector(01 downto 0); end record; signal rtx_engine : rtx_engine_t; begin -- Access Control ------------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- acc_en <= '1' when (addr_i(hi_abb_c downto lo_abb_c) = spi_base_c(hi_abb_c downto lo_abb_c)) else '0'; addr <= spi_base_c(31 downto lo_abb_c) & addr_i(lo_abb_c-1 downto 2) & "00"; -- word aligned wren <= acc_en and wren_i; rden <= acc_en and rden_i; -- Read/Write Access ---------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- rw_access: process(clk_i) begin if rising_edge(clk_i) then -- bus access acknowledge -- ack_o <= rden or wren; -- write access -- if (wren = '1') then if (addr = spi_ctrl_addr_c) then -- control register ctrl(ctrl_cs0_c) <= data_i(ctrl_cs0_c); ctrl(ctrl_cs1_c) <= data_i(ctrl_cs1_c); ctrl(ctrl_cs2_c) <= data_i(ctrl_cs2_c); ctrl(ctrl_cs3_c) <= data_i(ctrl_cs3_c); ctrl(ctrl_cs4_c) <= data_i(ctrl_cs4_c); ctrl(ctrl_cs5_c) <= data_i(ctrl_cs5_c); ctrl(ctrl_cs6_c) <= data_i(ctrl_cs6_c); ctrl(ctrl_cs7_c) <= data_i(ctrl_cs7_c); -- ctrl(ctrl_en_c) <= data_i(ctrl_en_c); ctrl(ctrl_cpha_c) <= data_i(ctrl_cpha_c); ctrl(ctrl_prsc0_c) <= data_i(ctrl_prsc0_c); ctrl(ctrl_prsc1_c) <= data_i(ctrl_prsc1_c); ctrl(ctrl_prsc2_c) <= data_i(ctrl_prsc2_c); ctrl(ctrl_size0_c) <= data_i(ctrl_size0_c); ctrl(ctrl_size1_c) <= data_i(ctrl_size1_c); ctrl(ctrl_cpol_c) <= data_i(ctrl_cpol_c); end if; end if; -- read access -- data_o <= (others => '0'); if (rden = '1') then if (addr = spi_ctrl_addr_c) then -- control register data_o(ctrl_cs0_c) <= ctrl(ctrl_cs0_c); data_o(ctrl_cs1_c) <= ctrl(ctrl_cs1_c); data_o(ctrl_cs2_c) <= ctrl(ctrl_cs2_c); data_o(ctrl_cs3_c) <= ctrl(ctrl_cs3_c); data_o(ctrl_cs4_c) <= ctrl(ctrl_cs4_c); data_o(ctrl_cs5_c) <= ctrl(ctrl_cs5_c); data_o(ctrl_cs6_c) <= ctrl(ctrl_cs6_c); data_o(ctrl_cs7_c) <= ctrl(ctrl_cs7_c); -- data_o(ctrl_en_c) <= ctrl(ctrl_en_c); data_o(ctrl_cpha_c) <= ctrl(ctrl_cpha_c); data_o(ctrl_prsc0_c) <= ctrl(ctrl_prsc0_c); data_o(ctrl_prsc1_c) <= ctrl(ctrl_prsc1_c); data_o(ctrl_prsc2_c) <= ctrl(ctrl_prsc2_c); data_o(ctrl_size0_c) <= ctrl(ctrl_size0_c); data_o(ctrl_size1_c) <= ctrl(ctrl_size1_c); data_o(ctrl_cpol_c) <= ctrl(ctrl_cpol_c); -- data_o(ctrl_busy_c) <= rtx_engine.busy; else -- data register (spi_rtx_addr_c) data_o <= rtx_engine.sreg; end if; end if; end if; end process rw_access; -- direct chip-select (CS), output is low-active -- spi_csn_o(7 downto 0) <= not ctrl(ctrl_cs7_c downto ctrl_cs0_c); -- trigger new SPI transmission -- rtx_engine.start <= '1' when (wren = '1') and (addr = spi_rtx_addr_c) else '0'; -- Clock Selection ------------------------------------------------------------------------ -- ------------------------------------------------------------------------------------------- clkgen_en_o <= ctrl(ctrl_en_c); -- clock generator enable spi_clk_en <= clkgen_i(to_integer(unsigned(ctrl(ctrl_prsc2_c downto ctrl_prsc0_c)))); -- clock select -- Transmission Data Size ----------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- data_size: process(ctrl) begin case ctrl(ctrl_size1_c downto ctrl_size0_c) is when "00" => rtx_engine.bytecnt <= "001"; -- 1-byte mode when "01" => rtx_engine.bytecnt <= "010"; -- 2-byte mode when "10" => rtx_engine.bytecnt <= "011"; -- 3-byte mode when others => rtx_engine.bytecnt <= "100"; -- 4-byte mode end case; end process data_size; -- SPI Transceiver ------------------------------------------------------------------------ -- ------------------------------------------------------------------------------------------- spi_rtx_unit: process(clk_i) begin if rising_edge(clk_i) then -- input (sdi) synchronizer -- rtx_engine.sdi_sync <= rtx_engine.sdi_sync(0) & spi_sdi_i; -- output (sdo) buffer -- case ctrl(ctrl_size1_c downto ctrl_size0_c) is when "00" => spi_sdo_o <= rtx_engine.sreg(07); -- 8-bit mode when "01" => spi_sdo_o <= rtx_engine.sreg(15); -- 16-bit mode when "10" => spi_sdo_o <= rtx_engine.sreg(23); -- 24-bit mode when others => spi_sdo_o <= rtx_engine.sreg(31); -- 32-bit mode end case; -- defaults -- spi_sck_o <= ctrl(ctrl_cpol_c); -- serial engine -- rtx_engine.state(2) <= ctrl(ctrl_en_c); case rtx_engine.state is when "100" => -- enabled but idle, waiting for new transmission trigger -- ------------------------------------------------------------ rtx_engine.bitcnt <= (others => '0'); if (rtx_engine.start = '1') then -- trigger new transmission rtx_engine.sreg <= data_i; rtx_engine.state(1 downto 0) <= "01"; end if; when "101" => -- start with next new clock pulse -- ------------------------------------------------------------ if (spi_clk_en = '1') then rtx_engine.state(1 downto 0) <= "10"; end if; when "110" => -- first half of bit transmission -- ------------------------------------------------------------ spi_sck_o <= ctrl(ctrl_cpha_c) xor ctrl(ctrl_cpol_c); if (spi_clk_en = '1') then rtx_engine.bitcnt <= std_ulogic_vector(unsigned(rtx_engine.bitcnt) + 1); rtx_engine.state(1 downto 0) <= "11"; end if; when "111" => -- second half of bit transmission -- ------------------------------------------------------------ spi_sck_o <= ctrl(ctrl_cpha_c) xnor ctrl(ctrl_cpol_c); if (spi_clk_en = '1') then rtx_engine.sreg <= rtx_engine.sreg(30 downto 0) & rtx_engine.sdi_sync(rtx_engine.sdi_sync'left); if (rtx_engine.bitcnt(5 downto 3) = rtx_engine.bytecnt) then -- all bits transferred? rtx_engine.state(1 downto 0) <= "00"; else rtx_engine.state(1 downto 0) <= "10"; end if; end if; when others => -- "0--": SPI deactivated -- ------------------------------------------------------------ rtx_engine.state(1 downto 0) <= "00"; end case; end if; end process spi_rtx_unit; -- busy flag -- rtx_engine.busy <= '0' when (rtx_engine.state(1 downto 0) = "00") else '1'; -- Interrupt ------------------------------------------------------------------------------ -- ------------------------------------------------------------------------------------------- irq_o <= '1' when (rtx_engine.state = "100") else '0'; -- fire IRQ if transceiver idle and enabled end neorv32_spi_rtl;
Go to most recent revision | Compare with Previous | Blame | View Log