URL
https://opencores.org/ocsvn/neorv32/neorv32/trunk
Subversion Repositories neorv32
[/] [neorv32/] [trunk/] [rtl/] [core/] [neorv32_top.vhd] - Rev 72
Go to most recent revision | Compare with Previous | Blame | View Log
-- ################################################################################################# -- # << The NEORV32 RISC-V Processor - Top Entity >> # -- # ********************************************************************************************* # -- # Check out the processor's online documentation for more information: # -- # HQ: https://github.com/stnolting/neorv32 # -- # Data Sheet: https://stnolting.github.io/neorv32 # -- # User Guide: https://stnolting.github.io/neorv32/ug # -- # ********************************************************************************************* # -- # BSD 3-Clause License # -- # # -- # Copyright (c) 2022, Stephan Nolting. All rights reserved. # -- # # -- # Redistribution and use in source and binary forms, with or without modification, are # -- # permitted provided that the following conditions are met: # -- # # -- # 1. Redistributions of source code must retain the above copyright notice, this list of # -- # conditions and the following disclaimer. # -- # # -- # 2. Redistributions in binary form must reproduce the above copyright notice, this list of # -- # conditions and the following disclaimer in the documentation and/or other materials # -- # provided with the distribution. # -- # # -- # 3. Neither the name of the copyright holder nor the names of its contributors may be used to # -- # endorse or promote products derived from this software without specific prior written # -- # permission. # -- # # -- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS # -- # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # -- # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # -- # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # -- # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # -- # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED # -- # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # -- # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # -- # OF THE POSSIBILITY OF SUCH DAMAGE. # -- # ********************************************************************************************* # -- # The NEORV32 Processor - https://github.com/stnolting/neorv32 (c) Stephan Nolting # -- ################################################################################################# library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library neorv32; use neorv32.neorv32_package.all; entity neorv32_top is generic ( -- General -- CLOCK_FREQUENCY : natural; -- clock frequency of clk_i in Hz HW_THREAD_ID : natural := 0; -- hardware thread id (32-bit) INT_BOOTLOADER_EN : boolean := false; -- boot configuration: true = boot explicit bootloader; false = boot from int/ext (I)MEM -- On-Chip Debugger (OCD) -- ON_CHIP_DEBUGGER_EN : boolean := false; -- implement on-chip debugger -- RISC-V CPU Extensions -- CPU_EXTENSION_RISCV_A : boolean := false; -- implement atomic extension? CPU_EXTENSION_RISCV_B : boolean := false; -- implement bit-manipulation extension? CPU_EXTENSION_RISCV_C : boolean := false; -- implement compressed extension? CPU_EXTENSION_RISCV_E : boolean := false; -- implement embedded RF extension? CPU_EXTENSION_RISCV_M : boolean := false; -- implement mul/div extension? CPU_EXTENSION_RISCV_U : boolean := false; -- implement user mode extension? CPU_EXTENSION_RISCV_Zfinx : boolean := false; -- implement 32-bit floating-point extension (using INT regs!) CPU_EXTENSION_RISCV_Zicsr : boolean := true; -- implement CSR system? CPU_EXTENSION_RISCV_Zicntr : boolean := true; -- implement base counters? CPU_EXTENSION_RISCV_Zihpm : boolean := false; -- implement hardware performance monitors? CPU_EXTENSION_RISCV_Zifencei : boolean := false; -- implement instruction stream sync.? CPU_EXTENSION_RISCV_Zmmul : boolean := false; -- implement multiply-only M sub-extension? CPU_EXTENSION_RISCV_Zxcfu : boolean := false; -- implement custom (instr.) functions unit? -- Tuning Options -- FAST_MUL_EN : boolean := false; -- use DSPs for M extension's multiplier FAST_SHIFT_EN : boolean := false; -- use barrel shifter for shift operations CPU_CNT_WIDTH : natural := 64; -- total width of CPU cycle and instret counters (0..64) CPU_IPB_ENTRIES : natural := 2; -- entries is instruction prefetch buffer, has to be a power of 2 -- Physical Memory Protection (PMP) -- PMP_NUM_REGIONS : natural := 0; -- number of regions (0..64) PMP_MIN_GRANULARITY : natural := 64*1024; -- minimal region granularity in bytes, has to be a power of 2, min 8 bytes -- Hardware Performance Monitors (HPM) -- HPM_NUM_CNTS : natural := 0; -- number of implemented HPM counters (0..29) HPM_CNT_WIDTH : natural := 40; -- total size of HPM counters (0..64) -- Internal Instruction memory (IMEM) -- MEM_INT_IMEM_EN : boolean := false; -- implement processor-internal instruction memory MEM_INT_IMEM_SIZE : natural := 16*1024; -- size of processor-internal instruction memory in bytes -- Internal Data memory (DMEM) -- MEM_INT_DMEM_EN : boolean := false; -- implement processor-internal data memory MEM_INT_DMEM_SIZE : natural := 8*1024; -- size of processor-internal data memory in bytes -- Internal Instruction Cache (iCACHE) -- ICACHE_EN : boolean := false; -- implement instruction cache ICACHE_NUM_BLOCKS : natural := 4; -- i-cache: number of blocks (min 1), has to be a power of 2 ICACHE_BLOCK_SIZE : natural := 64; -- i-cache: block size in bytes (min 4), has to be a power of 2 ICACHE_ASSOCIATIVITY : natural := 1; -- i-cache: associativity / number of sets (1=direct_mapped), has to be a power of 2 -- External memory interface (WISHBONE) -- MEM_EXT_EN : boolean := false; -- implement external memory bus interface? MEM_EXT_TIMEOUT : natural := 255; -- cycles after a pending bus access auto-terminates (0 = disabled) MEM_EXT_PIPE_MODE : boolean := false; -- protocol: false=classic/standard wishbone mode, true=pipelined wishbone mode MEM_EXT_BIG_ENDIAN : boolean := false; -- byte order: true=big-endian, false=little-endian MEM_EXT_ASYNC_RX : boolean := false; -- use register buffer for RX data when false -- Stream link interface (SLINK) -- SLINK_NUM_TX : natural := 0; -- number of TX links (0..8) SLINK_NUM_RX : natural := 0; -- number of TX links (0..8) SLINK_TX_FIFO : natural := 1; -- TX fifo depth, has to be a power of two SLINK_RX_FIFO : natural := 1; -- RX fifo depth, has to be a power of two -- External Interrupts Controller (XIRQ) -- XIRQ_NUM_CH : natural := 0; -- number of external IRQ channels (0..32) XIRQ_TRIGGER_TYPE : std_ulogic_vector(31 downto 0) := x"ffffffff"; -- trigger type: 0=level, 1=edge XIRQ_TRIGGER_POLARITY : std_ulogic_vector(31 downto 0) := x"ffffffff"; -- trigger polarity: 0=low-level/falling-edge, 1=high-level/rising-edge -- Processor peripherals -- IO_GPIO_EN : boolean := false; -- implement general purpose input/output port unit (GPIO)? IO_MTIME_EN : boolean := false; -- implement machine system timer (MTIME)? IO_UART0_EN : boolean := false; -- implement primary universal asynchronous receiver/transmitter (UART0)? IO_UART0_RX_FIFO : natural := 1; -- RX fifo depth, has to be a power of two, min 1 IO_UART0_TX_FIFO : natural := 1; -- TX fifo depth, has to be a power of two, min 1 IO_UART1_EN : boolean := false; -- implement secondary universal asynchronous receiver/transmitter (UART1)? IO_UART1_RX_FIFO : natural := 1; -- RX fifo depth, has to be a power of two, min 1 IO_UART1_TX_FIFO : natural := 1; -- TX fifo depth, has to be a power of two, min 1 IO_SPI_EN : boolean := false; -- implement serial peripheral interface (SPI)? IO_TWI_EN : boolean := false; -- implement two-wire interface (TWI)? IO_PWM_NUM_CH : natural := 0; -- number of PWM channels to implement (0..60); 0 = disabled IO_WDT_EN : boolean := false; -- implement watch dog timer (WDT)? IO_TRNG_EN : boolean := false; -- implement true random number generator (TRNG)? IO_CFS_EN : boolean := false; -- implement custom functions subsystem (CFS)? IO_CFS_CONFIG : std_ulogic_vector(31 downto 0) := x"00000000"; -- custom CFS configuration generic IO_CFS_IN_SIZE : positive := 32; -- size of CFS input conduit in bits IO_CFS_OUT_SIZE : positive := 32; -- size of CFS output conduit in bits IO_NEOLED_EN : boolean := false; -- implement NeoPixel-compatible smart LED interface (NEOLED)? IO_NEOLED_TX_FIFO : natural := 1; -- NEOLED TX FIFO depth, 1..32k, has to be a power of two IO_GPTMR_EN : boolean := false; -- implement general purpose timer (GPTMR)? IO_XIP_EN : boolean := false -- implement execute in place module (XIP)? ); port ( -- Global control -- clk_i : in std_ulogic; -- global clock, rising edge rstn_i : in std_ulogic; -- global reset, low-active, async -- JTAG on-chip debugger interface (available if ON_CHIP_DEBUGGER_EN = true) -- jtag_trst_i : in std_ulogic := 'U'; -- low-active TAP reset (optional) jtag_tck_i : in std_ulogic := 'U'; -- serial clock jtag_tdi_i : in std_ulogic := 'U'; -- serial data input jtag_tdo_o : out std_ulogic; -- serial data output jtag_tms_i : in std_ulogic := 'U'; -- mode select -- Wishbone bus interface (available if MEM_EXT_EN = true) -- wb_tag_o : out std_ulogic_vector(02 downto 0); -- request tag wb_adr_o : out std_ulogic_vector(31 downto 0); -- address wb_dat_i : in std_ulogic_vector(31 downto 0) := (others => 'U'); -- read data wb_dat_o : out std_ulogic_vector(31 downto 0); -- write data wb_we_o : out std_ulogic; -- read/write wb_sel_o : out std_ulogic_vector(03 downto 0); -- byte enable wb_stb_o : out std_ulogic; -- strobe wb_cyc_o : out std_ulogic; -- valid cycle wb_lock_o : out std_ulogic; -- exclusive access request wb_ack_i : in std_ulogic := 'L'; -- transfer acknowledge wb_err_i : in std_ulogic := 'L'; -- transfer error -- Advanced memory control signals (available if MEM_EXT_EN = true) -- fence_o : out std_ulogic; -- indicates an executed FENCE operation fencei_o : out std_ulogic; -- indicates an executed FENCEI operation -- XIP (execute in place via SPI) signals (available if IO_XIP_EN = true) -- xip_csn_o : out std_ulogic; -- chip-select, low-active xip_clk_o : out std_ulogic; -- serial clock xip_sdi_i : in std_ulogic := 'L'; -- device data input xip_sdo_o : out std_ulogic; -- controller data output -- TX stream interfaces (available if SLINK_NUM_TX > 0) -- slink_tx_dat_o : out sdata_8x32_t; -- output data slink_tx_val_o : out std_ulogic_vector(7 downto 0); -- valid output slink_tx_rdy_i : in std_ulogic_vector(7 downto 0) := (others => 'L'); -- ready to send -- RX stream interfaces (available if SLINK_NUM_RX > 0) -- slink_rx_dat_i : in sdata_8x32_t := (others => (others => 'U')); -- input data slink_rx_val_i : in std_ulogic_vector(7 downto 0) := (others => 'L'); -- valid input slink_rx_rdy_o : out std_ulogic_vector(7 downto 0); -- ready to receive -- GPIO (available if IO_GPIO_EN = true) -- gpio_o : out std_ulogic_vector(63 downto 0); -- parallel output gpio_i : in std_ulogic_vector(63 downto 0) := (others => 'U'); -- parallel input -- primary UART0 (available if IO_UART0_EN = true) -- uart0_txd_o : out std_ulogic; -- UART0 send data uart0_rxd_i : in std_ulogic := 'U'; -- UART0 receive data uart0_rts_o : out std_ulogic; -- hw flow control: UART0.RX ready to receive ("RTR"), low-active, optional uart0_cts_i : in std_ulogic := 'L'; -- hw flow control: UART0.TX allowed to transmit, low-active, optional -- secondary UART1 (available if IO_UART1_EN = true) -- uart1_txd_o : out std_ulogic; -- UART1 send data uart1_rxd_i : in std_ulogic := 'U'; -- UART1 receive data uart1_rts_o : out std_ulogic; -- hw flow control: UART1.RX ready to receive ("RTR"), low-active, optional uart1_cts_i : in std_ulogic := 'L'; -- hw flow control: UART1.TX allowed to transmit, low-active, optional -- SPI (available if IO_SPI_EN = true) -- spi_sck_o : out std_ulogic; -- SPI serial clock spi_sdo_o : out std_ulogic; -- controller data out, peripheral data in spi_sdi_i : in std_ulogic := 'U'; -- controller data in, peripheral data out spi_csn_o : out std_ulogic_vector(07 downto 0); -- chip-select -- TWI (available if IO_TWI_EN = true) -- twi_sda_io : inout std_logic; -- twi serial data line twi_scl_io : inout std_logic; -- twi serial clock line -- PWM (available if IO_PWM_NUM_CH > 0) -- pwm_o : out std_ulogic_vector(59 downto 0); -- pwm channels -- Custom Functions Subsystem IO (available if IO_CFS_EN = true) -- cfs_in_i : in std_ulogic_vector(IO_CFS_IN_SIZE-1 downto 0) := (others => 'U'); -- custom CFS inputs conduit cfs_out_o : out std_ulogic_vector(IO_CFS_OUT_SIZE-1 downto 0); -- custom CFS outputs conduit -- NeoPixel-compatible smart LED interface (available if IO_NEOLED_EN = true) -- neoled_o : out std_ulogic; -- async serial data line -- System time -- mtime_i : in std_ulogic_vector(63 downto 0) := (others => 'U'); -- current system time from ext. MTIME (if IO_MTIME_EN = false) mtime_o : out std_ulogic_vector(63 downto 0); -- current system time from int. MTIME (if IO_MTIME_EN = true) -- External platform interrupts (available if XIRQ_NUM_CH > 0) -- xirq_i : in std_ulogic_vector(31 downto 0) := (others => 'L'); -- IRQ channels -- CPU interrupts -- mtime_irq_i : in std_ulogic := 'L'; -- machine timer interrupt, available if IO_MTIME_EN = false msw_irq_i : in std_ulogic := 'L'; -- machine software interrupt mext_irq_i : in std_ulogic := 'L' -- machine external interrupt ); end neorv32_top; architecture neorv32_top_rtl of neorv32_top is -- CPU boot configuration -- constant cpu_boot_addr_c : std_ulogic_vector(31 downto 0) := cond_sel_stdulogicvector_f(INT_BOOTLOADER_EN, boot_rom_base_c, ispace_base_c); -- alignment check for internal memories -- constant imem_align_check_c : std_ulogic_vector(index_size_f(MEM_INT_IMEM_SIZE)-1 downto 0) := (others => '0'); constant dmem_align_check_c : std_ulogic_vector(index_size_f(MEM_INT_DMEM_SIZE)-1 downto 0) := (others => '0'); -- helpers -- constant io_slink_en_c : boolean := boolean(SLINK_NUM_RX > 0) or boolean(SLINK_NUM_TX > 0); -- implement slink at all? -- reset generator -- signal rstn_gen : std_ulogic_vector(7 downto 0) := (others => '0'); -- initialize (=reset) via bitstream (for FPGAs only) signal ext_rstn : std_ulogic; signal sys_rstn : std_ulogic; signal wdt_rstn : std_ulogic; -- clock generator -- signal clk_div : std_ulogic_vector(11 downto 0); signal clk_div_ff : std_ulogic_vector(11 downto 0); signal clk_gen : std_ulogic_vector(07 downto 0); signal clk_gen_en : std_ulogic_vector(09 downto 0); signal clk_gen_en_ff : std_ulogic; -- signal wdt_cg_en : std_ulogic; signal uart0_cg_en : std_ulogic; signal uart1_cg_en : std_ulogic; signal spi_cg_en : std_ulogic; signal twi_cg_en : std_ulogic; signal pwm_cg_en : std_ulogic; signal cfs_cg_en : std_ulogic; signal neoled_cg_en : std_ulogic; signal gptmr_cg_en : std_ulogic; signal xip_cg_en : std_ulogic; -- bus interface -- type bus_interface_t is record addr : std_ulogic_vector(data_width_c-1 downto 0); -- bus access address rdata : std_ulogic_vector(data_width_c-1 downto 0); -- bus read data wdata : std_ulogic_vector(data_width_c-1 downto 0); -- bus write data ben : std_ulogic_vector(03 downto 0); -- byte enable we : std_ulogic; -- write enable re : std_ulogic; -- read enable ack : std_ulogic; -- bus transfer acknowledge err : std_ulogic; -- bus transfer error fence : std_ulogic; -- fence(i) instruction executed priv : std_ulogic_vector(1 downto 0); -- current privilege level src : std_ulogic; -- access source (1=instruction fetch, 0=data access) lock : std_ulogic; -- exclusive access request end record; signal cpu_i, i_cache, cpu_d, p_bus : bus_interface_t; -- bus access error (from BUSKEEPER) -- signal bus_error : std_ulogic; -- debug core interface (DCI) -- signal dci_ndmrstn : std_ulogic; signal dci_halt_req : std_ulogic; -- debug module interface (DMI) -- type dmi_t is record rstn : std_ulogic; req_valid : std_ulogic; req_ready : std_ulogic; -- DMI is allowed to make new requests when set req_addr : std_ulogic_vector(06 downto 0); req_op : std_ulogic; -- 0=read, 1=write req_data : std_ulogic_vector(31 downto 0); resp_valid : std_ulogic; -- response valid when set resp_ready : std_ulogic; -- ready to receive respond resp_data : std_ulogic_vector(31 downto 0); resp_err : std_ulogic; -- 0=ok, 1=error end record; signal dmi : dmi_t; -- io space access -- signal io_acc : std_ulogic; signal io_rden : std_ulogic; signal io_wren : std_ulogic; -- module response bus - entry type -- type resp_bus_entry_t is record rdata : std_ulogic_vector(data_width_c-1 downto 0); ack : std_ulogic; err : std_ulogic; end record; constant resp_bus_entry_terminate_c : resp_bus_entry_t := (rdata => (others => '0'), ack => '0', err => '0'); -- module response bus - device ID -- type resp_bus_id_t is (RESP_BUSKEEPER, RESP_IMEM, RESP_DMEM, RESP_BOOTROM, RESP_WISHBONE, RESP_GPIO, RESP_MTIME, RESP_UART0, RESP_UART1, RESP_SPI, RESP_TWI, RESP_PWM, RESP_WDT, RESP_TRNG, RESP_CFS, RESP_NEOLED, RESP_SYSINFO, RESP_OCD, RESP_SLINK, RESP_XIRQ, RESP_GPTMR, RESP_XIP_CT, RESP_XIP_IF); -- module response bus -- type resp_bus_t is array (resp_bus_id_t) of resp_bus_entry_t; signal resp_bus : resp_bus_t := (others => resp_bus_entry_terminate_c); -- IRQs -- signal fast_irq : std_ulogic_vector(15 downto 0); signal mtime_irq : std_ulogic; signal wdt_irq : std_ulogic; signal uart0_rxd_irq : std_ulogic; signal uart0_txd_irq : std_ulogic; signal uart1_rxd_irq : std_ulogic; signal uart1_txd_irq : std_ulogic; signal spi_irq : std_ulogic; signal twi_irq : std_ulogic; signal cfs_irq : std_ulogic; signal neoled_irq : std_ulogic; signal slink_tx_irq : std_ulogic; signal slink_rx_irq : std_ulogic; signal xirq_irq : std_ulogic; signal gptmr_irq : std_ulogic; -- misc -- signal mtime_time : std_ulogic_vector(63 downto 0); -- current system time from MTIME signal ext_timeout : std_ulogic; signal ext_access : std_ulogic; signal xip_access : std_ulogic; signal xip_enable : std_ulogic; signal xip_page : std_ulogic_vector(3 downto 0); signal debug_mode : std_ulogic; begin -- Processor IO/Peripherals Configuration ------------------------------------------------- -- ------------------------------------------------------------------------------------------- assert false report "NEORV32 PROCESSOR IO Configuration: " & cond_sel_string_f(IO_GPIO_EN, "GPIO ", "") & cond_sel_string_f(IO_MTIME_EN, "MTIME ", "") & cond_sel_string_f(IO_UART0_EN, "UART0 ", "") & cond_sel_string_f(IO_UART1_EN, "UART1 ", "") & cond_sel_string_f(IO_SPI_EN, "SPI ", "") & cond_sel_string_f(IO_TWI_EN, "TWI ", "") & cond_sel_string_f(boolean(IO_PWM_NUM_CH > 0), "PWM ", "") & cond_sel_string_f(IO_WDT_EN, "WDT ", "") & cond_sel_string_f(IO_TRNG_EN, "TRNG ", "") & cond_sel_string_f(IO_CFS_EN, "CFS ", "") & cond_sel_string_f(io_slink_en_c, "SLINK ", "") & cond_sel_string_f(IO_NEOLED_EN, "NEOLED ", "") & cond_sel_string_f(boolean(XIRQ_NUM_CH > 0), "XIRQ ", "") & cond_sel_string_f(IO_GPTMR_EN, "GPTMR ", "") & cond_sel_string_f(IO_XIP_EN, "XIP ", "") & "" severity note; -- Sanity Checks -------------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- -- boot configuration -- assert not (INT_BOOTLOADER_EN = true) report "NEORV32 PROCESSOR CONFIG NOTE: Boot configuration: Indirect boot via bootloader (processor-internal BOOTROM)." severity note; assert not ((INT_BOOTLOADER_EN = false) and (MEM_INT_IMEM_EN = true)) report "NEORV32 PROCESSOR CONFIG NOTE: Boot configuration: Direct boot from memory (processor-internal IMEM)." severity note; assert not ((INT_BOOTLOADER_EN = false) and (MEM_INT_IMEM_EN = false)) report "NEORV32 PROCESSOR CONFIG NOTE: Boot configuration: Direct boot from memory (processor-external (I)MEM)." severity note; -- assert not ((MEM_EXT_EN = false) and (MEM_INT_DMEM_EN = false)) report "NEORV32 PROCESSOR CONFIG ERROR! Core cannot fetch data without external memory interface and internal IMEM." severity error; assert not ((MEM_EXT_EN = false) and (MEM_INT_IMEM_EN = false) and (INT_BOOTLOADER_EN = false)) report "NEORV32 PROCESSOR CONFIG ERROR! Core cannot fetch instructions without external memory interface, internal IMEM and bootloader." severity error; -- memory system - size -- assert not ((MEM_INT_DMEM_EN = true) and (is_power_of_two_f(MEM_INT_IMEM_SIZE) = false)) report "NEORV32 PROCESSOR CONFIG WARNING! MEM_INT_IMEM_SIZE should be a power of 2 to allow optimal hardware mapping." severity warning; assert not ((MEM_INT_IMEM_EN = true) and (is_power_of_two_f(MEM_INT_DMEM_SIZE) = false)) report "NEORV32 PROCESSOR CONFIG WARNING! MEM_INT_DMEM_SIZE should be a power of 2 to allow optimal hardware mapping." severity warning; -- memory system - alignment -- assert not (ispace_base_c(1 downto 0) /= "00") report "NEORV32 PROCESSOR CONFIG ERROR! Instruction memory space base address must be 4-byte-aligned." severity error; assert not (dspace_base_c(1 downto 0) /= "00") report "NEORV32 PROCESSOR CONFIG ERROR! Data memory space base address must be 4-byte-aligned." severity error; assert not ((ispace_base_c(index_size_f(MEM_INT_IMEM_SIZE)-1 downto 0) /= imem_align_check_c) and (MEM_INT_IMEM_EN = true)) report "NEORV32 PROCESSOR CONFIG ERROR! Instruction memory space base address has to be aligned to IMEM size." severity error; assert not ((dspace_base_c(index_size_f(MEM_INT_DMEM_SIZE)-1 downto 0) /= dmem_align_check_c) and (MEM_INT_DMEM_EN = true)) report "NEORV32 PROCESSOR CONFIG ERROR! Data memory space base address has to be aligned to DMEM size." severity error; -- memory system - layout warning -- assert not (ispace_base_c /= x"00000000") report "NEORV32 PROCESSOR CONFIG WARNING! Non-default base address for instruction address space. Make sure this is sync with the software framework." severity warning; assert not (dspace_base_c /= x"80000000") report "NEORV32 PROCESSOR CONFIG WARNING! Non-default base address for data address space. Make sure this is sync with the software framework." severity warning; -- memory system - the i-cache is intended to accelerate instruction fetch via the external memory interface only -- assert not ((ICACHE_EN = true) and (MEM_EXT_EN = false)) report "NEORV32 PROCESSOR CONFIG NOTE. Implementing i-cache without having the external memory interface implemented. The i-cache is intended to accelerate instruction fetch via the external memory interface." severity note; -- on-chip debugger -- assert not (ON_CHIP_DEBUGGER_EN = true) report "NEORV32 PROCESSOR CONFIG NOTE: Implementing on-chip debugger (OCD)." severity note; -- Reset Generator ------------------------------------------------------------------------ -- ------------------------------------------------------------------------------------------- reset_generator: process(rstn_i, clk_i) begin if (rstn_i = '0') then rstn_gen <= (others => '0'); sys_rstn <= '0'; elsif rising_edge(clk_i) then -- keep internal reset active for at least <rstn_gen'size> clock cycles -- rstn_gen <= rstn_gen(rstn_gen'left-1 downto 0) & '1'; -- system reset: can also be triggered by watchdog and debug module -- sys_rstn <= ext_rstn and wdt_rstn and dci_ndmrstn; end if; end process reset_generator; -- beautified external reset signal -- ext_rstn <= rstn_gen(rstn_gen'left); -- Clock Generator ------------------------------------------------------------------------ -- ------------------------------------------------------------------------------------------- clock_generator: process(sys_rstn, clk_i) begin if (sys_rstn = '0') then clk_gen_en_ff <= '-'; clk_div <= (others => '0'); -- reset required clk_div_ff <= (others => '-'); clk_gen <= (others => '-'); elsif rising_edge(clk_i) then clk_gen_en_ff <= or_reduce_f(clk_gen_en); -- actual clock generator -- if (clk_gen_en_ff = '1') then clk_div <= std_ulogic_vector(unsigned(clk_div) + 1); end if; -- clock enables: rising edge detectors -- clk_div_ff <= clk_div; clk_gen(clk_div2_c) <= clk_div(0) and (not clk_div_ff(0)); -- CLK/2 clk_gen(clk_div4_c) <= clk_div(1) and (not clk_div_ff(1)); -- CLK/4 clk_gen(clk_div8_c) <= clk_div(2) and (not clk_div_ff(2)); -- CLK/8 clk_gen(clk_div64_c) <= clk_div(5) and (not clk_div_ff(5)); -- CLK/64 clk_gen(clk_div128_c) <= clk_div(6) and (not clk_div_ff(6)); -- CLK/128 clk_gen(clk_div1024_c) <= clk_div(9) and (not clk_div_ff(9)); -- CLK/1024 clk_gen(clk_div2048_c) <= clk_div(10) and (not clk_div_ff(10)); -- CLK/2048 clk_gen(clk_div4096_c) <= clk_div(11) and (not clk_div_ff(11)); -- CLK/4096 end if; end process clock_generator; -- fresh clocks anyone? -- clk_gen_en(0) <= wdt_cg_en; clk_gen_en(1) <= uart0_cg_en; clk_gen_en(2) <= uart1_cg_en; clk_gen_en(3) <= spi_cg_en; clk_gen_en(4) <= twi_cg_en; clk_gen_en(5) <= pwm_cg_en; clk_gen_en(6) <= cfs_cg_en; clk_gen_en(7) <= neoled_cg_en; clk_gen_en(8) <= gptmr_cg_en; clk_gen_en(9) <= xip_cg_en; -- CPU Core ------------------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- neorv32_cpu_inst: neorv32_cpu generic map ( -- General -- HW_THREAD_ID => HW_THREAD_ID, -- hardware thread id CPU_BOOT_ADDR => cpu_boot_addr_c, -- cpu boot address CPU_DEBUG_ADDR => dm_base_c, -- cpu debug mode start address -- RISC-V CPU Extensions -- CPU_EXTENSION_RISCV_A => CPU_EXTENSION_RISCV_A, -- implement atomic extension? CPU_EXTENSION_RISCV_B => CPU_EXTENSION_RISCV_B, -- implement bit-manipulation extension? CPU_EXTENSION_RISCV_C => CPU_EXTENSION_RISCV_C, -- implement compressed extension? CPU_EXTENSION_RISCV_E => CPU_EXTENSION_RISCV_E, -- implement embedded RF extension? CPU_EXTENSION_RISCV_M => CPU_EXTENSION_RISCV_M, -- implement mul/div extension? CPU_EXTENSION_RISCV_U => CPU_EXTENSION_RISCV_U, -- implement user mode extension? CPU_EXTENSION_RISCV_Zfinx => CPU_EXTENSION_RISCV_Zfinx, -- implement 32-bit floating-point extension (using INT reg!) CPU_EXTENSION_RISCV_Zicsr => CPU_EXTENSION_RISCV_Zicsr, -- implement CSR system? CPU_EXTENSION_RISCV_Zicntr => CPU_EXTENSION_RISCV_Zicntr, -- implement base counters? CPU_EXTENSION_RISCV_Zihpm => CPU_EXTENSION_RISCV_Zihpm, -- implement hardware performance monitors? CPU_EXTENSION_RISCV_Zifencei => CPU_EXTENSION_RISCV_Zifencei, -- implement instruction stream sync.? CPU_EXTENSION_RISCV_Zmmul => CPU_EXTENSION_RISCV_Zmmul, -- implement multiply-only M sub-extension? CPU_EXTENSION_RISCV_Zxcfu => CPU_EXTENSION_RISCV_Zxcfu, -- implement custom (instr.) functions unit? CPU_EXTENSION_RISCV_DEBUG => ON_CHIP_DEBUGGER_EN, -- implement CPU debug mode? -- Extension Options -- FAST_MUL_EN => FAST_MUL_EN, -- use DSPs for M extension's multiplier FAST_SHIFT_EN => FAST_SHIFT_EN, -- use barrel shifter for shift operations CPU_CNT_WIDTH => CPU_CNT_WIDTH, -- total width of CPU cycle and instret counters (0..64) CPU_IPB_ENTRIES => CPU_IPB_ENTRIES, -- entries is instruction prefetch buffer, has to be a power of 2 -- Physical Memory Protection (PMP) -- PMP_NUM_REGIONS => PMP_NUM_REGIONS, -- number of regions (0..64) PMP_MIN_GRANULARITY => PMP_MIN_GRANULARITY, -- minimal region granularity in bytes, has to be a power of 2, min 8 bytes -- Hardware Performance Monitors (HPM) -- HPM_NUM_CNTS => HPM_NUM_CNTS, -- number of implemented HPM counters (0..29) HPM_CNT_WIDTH => HPM_CNT_WIDTH -- total size of HPM counters (0..64) ) port map ( -- global control -- clk_i => clk_i, -- global clock, rising edge rstn_i => sys_rstn, -- global reset, low-active, async sleep_o => open, -- cpu is in sleep mode when set debug_o => debug_mode, -- cpu is in debug mode when set -- instruction bus interface -- i_bus_addr_o => cpu_i.addr, -- bus access address i_bus_rdata_i => cpu_i.rdata, -- bus read data i_bus_wdata_o => cpu_i.wdata, -- bus write data i_bus_ben_o => cpu_i.ben, -- byte enable i_bus_we_o => cpu_i.we, -- write enable i_bus_re_o => cpu_i.re, -- read enable i_bus_lock_o => cpu_i.lock, -- exclusive access request i_bus_ack_i => cpu_i.ack, -- bus transfer acknowledge i_bus_err_i => cpu_i.err, -- bus transfer error i_bus_fence_o => cpu_i.fence, -- executed FENCEI operation i_bus_priv_o => cpu_i.priv, -- privilege level -- data bus interface -- d_bus_addr_o => cpu_d.addr, -- bus access address d_bus_rdata_i => cpu_d.rdata, -- bus read data d_bus_wdata_o => cpu_d.wdata, -- bus write data d_bus_ben_o => cpu_d.ben, -- byte enable d_bus_we_o => cpu_d.we, -- write enable d_bus_re_o => cpu_d.re, -- read enable d_bus_lock_o => cpu_d.lock, -- exclusive access request d_bus_ack_i => cpu_d.ack, -- bus transfer acknowledge d_bus_err_i => cpu_d.err, -- bus transfer error d_bus_fence_o => cpu_d.fence, -- executed FENCE operation d_bus_priv_o => cpu_d.priv, -- privilege level -- system time input from MTIME -- time_i => mtime_time, -- current system time -- non-maskable interrupt -- msw_irq_i => msw_irq_i, -- machine software interrupt mext_irq_i => mext_irq_i, -- machine external interrupt request mtime_irq_i => mtime_irq, -- machine timer interrupt -- fast interrupts (custom) -- firq_i => fast_irq, -- fast interrupt trigger -- debug mode (halt) request -- db_halt_req_i => dci_halt_req ); -- misc -- cpu_i.src <= '1'; -- initialized but unused cpu_d.src <= '0'; -- initialized but unused -- advanced memory control -- fence_o <= cpu_d.fence; -- indicates an executed FENCE operation fencei_o <= cpu_i.fence; -- indicates an executed FENCEI operation -- fast interrupt requests (FIRQs) - triggers are SINGLE-SHOT -- fast_irq(00) <= wdt_irq; -- HIGHEST PRIORITY - watchdog fast_irq(01) <= cfs_irq; -- custom functions subsystem fast_irq(02) <= uart0_rxd_irq; -- primary UART (UART0) RX fast_irq(03) <= uart0_txd_irq; -- primary UART (UART0) TX fast_irq(04) <= uart1_rxd_irq; -- secondary UART (UART1) RX fast_irq(05) <= uart1_txd_irq; -- secondary UART (UART1) TX fast_irq(06) <= spi_irq; -- SPI transfer done fast_irq(07) <= twi_irq; -- TWI transfer done fast_irq(08) <= xirq_irq; -- external interrupt controller fast_irq(09) <= neoled_irq; -- NEOLED buffer IRQ fast_irq(10) <= slink_rx_irq; -- SLINK RX fast_irq(11) <= slink_tx_irq; -- SLINK TX fast_irq(12) <= gptmr_irq; -- general purpose timer -- fast_irq(13) <= '0'; -- reserved fast_irq(14) <= '0'; -- reserved fast_irq(15) <= '0'; -- LOWEST PRIORITY - reserved -- CPU Instruction Cache ------------------------------------------------------------------ -- ------------------------------------------------------------------------------------------- neorv32_icache_inst_true: if (ICACHE_EN = true) generate neorv32_icache_inst: neorv32_icache generic map ( ICACHE_NUM_BLOCKS => ICACHE_NUM_BLOCKS, -- number of blocks (min 2), has to be a power of 2 ICACHE_BLOCK_SIZE => ICACHE_BLOCK_SIZE, -- block size in bytes (min 4), has to be a power of 2 ICACHE_NUM_SETS => ICACHE_ASSOCIATIVITY -- associativity / number of sets (1=direct_mapped), has to be a power of 2 ) port map ( -- global control -- clk_i => clk_i, -- global clock, rising edge rstn_i => sys_rstn, -- global reset, low-active, async clear_i => cpu_i.fence, -- cache clear -- host controller interface -- host_addr_i => cpu_i.addr, -- bus access address host_rdata_o => cpu_i.rdata, -- bus read data host_wdata_i => cpu_i.wdata, -- bus write data host_ben_i => cpu_i.ben, -- byte enable host_we_i => cpu_i.we, -- write enable host_re_i => cpu_i.re, -- read enable host_ack_o => cpu_i.ack, -- bus transfer acknowledge host_err_o => cpu_i.err, -- bus transfer error -- peripheral bus interface -- bus_addr_o => i_cache.addr, -- bus access address bus_rdata_i => i_cache.rdata, -- bus read data bus_wdata_o => i_cache.wdata, -- bus write data bus_ben_o => i_cache.ben, -- byte enable bus_we_o => i_cache.we, -- write enable bus_re_o => i_cache.re, -- read enable bus_ack_i => i_cache.ack, -- bus transfer acknowledge bus_err_i => i_cache.err -- bus transfer error ); end generate; -- TODO: do not use LOCKED instruction fetch -- i_cache.lock <= '0'; neorv32_icache_inst_false: if (ICACHE_EN = false) generate i_cache.addr <= cpu_i.addr; cpu_i.rdata <= i_cache.rdata; i_cache.wdata <= cpu_i.wdata; i_cache.ben <= cpu_i.ben; i_cache.we <= cpu_i.we; i_cache.re <= cpu_i.re; cpu_i.ack <= i_cache.ack; cpu_i.err <= i_cache.err; end generate; -- CPU Bus Switch ------------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- neorv32_busswitch_inst: neorv32_busswitch generic map ( PORT_CA_READ_ONLY => false, -- set if controller port A is read-only PORT_CB_READ_ONLY => true -- set if controller port B is read-only ) port map ( -- global control -- clk_i => clk_i, -- global clock, rising edge rstn_i => sys_rstn, -- global reset, low-active, async -- controller interface a -- ca_bus_addr_i => cpu_d.addr, -- bus access address ca_bus_rdata_o => cpu_d.rdata, -- bus read data ca_bus_wdata_i => cpu_d.wdata, -- bus write data ca_bus_ben_i => cpu_d.ben, -- byte enable ca_bus_we_i => cpu_d.we, -- write enable ca_bus_re_i => cpu_d.re, -- read enable ca_bus_lock_i => cpu_d.lock, -- exclusive access request ca_bus_ack_o => cpu_d.ack, -- bus transfer acknowledge ca_bus_err_o => cpu_d.err, -- bus transfer error -- controller interface b -- cb_bus_addr_i => i_cache.addr, -- bus access address cb_bus_rdata_o => i_cache.rdata, -- bus read data cb_bus_wdata_i => i_cache.wdata, -- bus write data cb_bus_ben_i => i_cache.ben, -- byte enable cb_bus_we_i => i_cache.we, -- write enable cb_bus_re_i => i_cache.re, -- read enable cb_bus_lock_i => i_cache.lock, -- exclusive access request cb_bus_ack_o => i_cache.ack, -- bus transfer acknowledge cb_bus_err_o => i_cache.err, -- bus transfer error -- peripheral bus -- p_bus_src_o => p_bus.src, -- access source: 0 = A (data), 1 = B (instructions) p_bus_addr_o => p_bus.addr, -- bus access address p_bus_rdata_i => p_bus.rdata, -- bus read data p_bus_wdata_o => p_bus.wdata, -- bus write data p_bus_ben_o => p_bus.ben, -- byte enable p_bus_we_o => p_bus.we, -- write enable p_bus_re_o => p_bus.re, -- read enable p_bus_lock_o => p_bus.lock, -- exclusive access request p_bus_ack_i => p_bus.ack, -- bus transfer acknowledge p_bus_err_i => bus_error -- bus transfer error ); -- current CPU privilege level -- p_bus.priv <= cpu_i.priv; -- note: cpu_i.priv == cpu_d.priv -- fence operation (unused) -- p_bus.fence <= cpu_d.fence or cpu_i.fence; -- bus response -- bus_response: process(resp_bus) variable rdata_v : std_ulogic_vector(data_width_c-1 downto 0); variable ack_v : std_ulogic; variable err_v : std_ulogic; begin rdata_v := (others => '0'); ack_v := '0'; err_v := '0'; -- OR all module's response signals: only the module that is actually -- been accessed is allowed to set it's bus output signals for i in resp_bus'range loop rdata_v := rdata_v or resp_bus(i).rdata; -- read data ack_v := ack_v or resp_bus(i).ack; -- acknowledge err_v := err_v or resp_bus(i).err; -- error end loop; -- i p_bus.rdata <= rdata_v; -- processor bus: CPU transfer data input p_bus.ack <= ack_v; -- processor bus: CPU transfer ACK input p_bus.err <= err_v; -- processor bus: CPU transfer data bus error input end process; -- Bus Keeper (BUSKEEPER) ----------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- neorv32_bus_keeper_inst: neorv32_bus_keeper port map ( -- host access -- clk_i => clk_i, -- global clock line rstn_i => sys_rstn, -- global reset line, low-active, use as async addr_i => p_bus.addr, -- address rden_i => io_rden, -- read enable wren_i => io_wren, -- byte write enable data_i => p_bus.wdata, -- data in data_o => resp_bus(RESP_BUSKEEPER).rdata, -- data out ack_o => resp_bus(RESP_BUSKEEPER).ack, -- transfer acknowledge err_o => bus_error, -- transfer error -- bus monitoring -- bus_addr_i => p_bus.addr, -- address bus_rden_i => p_bus.re, -- read enable bus_wren_i => p_bus.we, -- write enable bus_ack_i => p_bus.ack, -- transfer acknowledge from bus system bus_err_i => p_bus.err, -- transfer error from bus system bus_tmo_i => ext_timeout, -- transfer timeout (external interface) bus_ext_i => ext_access, -- external bus access bus_xip_i => xip_access -- pending XIP access ); -- unused, BUSKEEPER **directly** issues error to the CPU -- resp_bus(RESP_BUSKEEPER).err <= '0'; -- Processor-Internal Instruction Memory (IMEM) ------------------------------------------- -- ------------------------------------------------------------------------------------------- neorv32_int_imem_inst_true: if (MEM_INT_IMEM_EN = true) and (MEM_INT_IMEM_SIZE > 0) generate neorv32_int_imem_inst: neorv32_imem generic map ( IMEM_BASE => imem_base_c, -- memory base address IMEM_SIZE => MEM_INT_IMEM_SIZE, -- processor-internal instruction memory size in bytes IMEM_AS_IROM => not INT_BOOTLOADER_EN -- implement IMEM as pre-initialized read-only memory? ) port map ( clk_i => clk_i, -- global clock line rden_i => p_bus.re, -- read enable wren_i => p_bus.we, -- write enable ben_i => p_bus.ben, -- byte write enable addr_i => p_bus.addr, -- address data_i => p_bus.wdata, -- data in data_o => resp_bus(RESP_IMEM).rdata, -- data out ack_o => resp_bus(RESP_IMEM).ack, -- transfer acknowledge err_o => resp_bus(RESP_IMEM).err -- transfer error ); end generate; neorv32_int_imem_inst_false: if (MEM_INT_IMEM_EN = false) or (MEM_INT_IMEM_SIZE = 0) generate resp_bus(RESP_IMEM) <= resp_bus_entry_terminate_c; end generate; -- Processor-Internal Data Memory (DMEM) -------------------------------------------------- -- ------------------------------------------------------------------------------------------- neorv32_int_dmem_inst_true: if (MEM_INT_DMEM_EN = true) and (MEM_INT_DMEM_SIZE > 0) generate neorv32_int_dmem_inst: neorv32_dmem generic map ( DMEM_BASE => dmem_base_c, -- memory base address DMEM_SIZE => MEM_INT_DMEM_SIZE -- processor-internal data memory size in bytes ) port map ( clk_i => clk_i, -- global clock line rden_i => p_bus.re, -- read enable wren_i => p_bus.we, -- write enable ben_i => p_bus.ben, -- byte write enable addr_i => p_bus.addr, -- address data_i => p_bus.wdata, -- data in data_o => resp_bus(RESP_DMEM).rdata, -- data out ack_o => resp_bus(RESP_DMEM).ack -- transfer acknowledge ); resp_bus(RESP_DMEM).err <= '0'; -- no access error possible end generate; neorv32_int_dmem_inst_false: if (MEM_INT_DMEM_EN = false) or (MEM_INT_DMEM_SIZE = 0) generate resp_bus(RESP_DMEM) <= resp_bus_entry_terminate_c; end generate; -- Processor-Internal Bootloader ROM (BOOTROM) -------------------------------------------- -- ------------------------------------------------------------------------------------------- neorv32_boot_rom_inst_true: if (INT_BOOTLOADER_EN = true) generate neorv32_boot_rom_inst: neorv32_boot_rom generic map ( BOOTROM_BASE => boot_rom_base_c -- boot ROM base address ) port map ( clk_i => clk_i, -- global clock line rden_i => p_bus.re, -- read enable wren_i => p_bus.we, -- write enable addr_i => p_bus.addr, -- address data_o => resp_bus(RESP_BOOTROM).rdata, -- data out ack_o => resp_bus(RESP_BOOTROM).ack, -- transfer acknowledge err_o => resp_bus(RESP_BOOTROM).err -- transfer error ); end generate; neorv32_boot_rom_inst_false: if (INT_BOOTLOADER_EN = false) generate resp_bus(RESP_BOOTROM) <= resp_bus_entry_terminate_c; end generate; -- External Wishbone Gateway (WISHBONE) --------------------------------------------------- -- ------------------------------------------------------------------------------------------- neorv32_wishbone_inst_true: if (MEM_EXT_EN = true) generate neorv32_wishbone_inst: neorv32_wishbone generic map ( -- Internal instruction memory -- MEM_INT_IMEM_EN => MEM_INT_IMEM_EN, -- implement processor-internal instruction memory MEM_INT_IMEM_SIZE => MEM_INT_IMEM_SIZE, -- size of processor-internal instruction memory in bytes -- Internal data memory -- MEM_INT_DMEM_EN => MEM_INT_DMEM_EN, -- implement processor-internal data memory MEM_INT_DMEM_SIZE => MEM_INT_DMEM_SIZE, -- size of processor-internal data memory in bytes -- Interface Configuration -- BUS_TIMEOUT => MEM_EXT_TIMEOUT, -- cycles after an UNACKNOWLEDGED bus access triggers a bus fault exception PIPE_MODE => MEM_EXT_PIPE_MODE, -- protocol: false=classic/standard wishbone mode, true=pipelined wishbone mode BIG_ENDIAN => MEM_EXT_BIG_ENDIAN, -- byte order: true=big-endian, false=little-endian ASYNC_RX => MEM_EXT_ASYNC_RX -- use register buffer for RX data when false ) port map ( -- global control -- clk_i => clk_i, -- global clock line rstn_i => sys_rstn, -- global reset line, low-active -- host access -- src_i => p_bus.src, -- access type (0: data, 1:instruction) addr_i => p_bus.addr, -- address rden_i => p_bus.re, -- read enable wren_i => p_bus.we, -- write enable ben_i => p_bus.ben, -- byte write enable data_i => p_bus.wdata, -- data in data_o => resp_bus(RESP_WISHBONE).rdata, -- data out lock_i => p_bus.lock, -- exclusive access request ack_o => resp_bus(RESP_WISHBONE).ack, -- transfer acknowledge err_o => resp_bus(RESP_WISHBONE).err, -- transfer error tmo_o => ext_timeout, -- transfer timeout priv_i => p_bus.priv, -- current CPU privilege level ext_o => ext_access, -- active external access -- xip configuration -- xip_en_i => xip_enable, -- XIP module enabled xip_page_i => xip_page, -- XIP memory page -- wishbone interface -- wb_tag_o => wb_tag_o, -- request tag wb_adr_o => wb_adr_o, -- address wb_dat_i => wb_dat_i, -- read data wb_dat_o => wb_dat_o, -- write data wb_we_o => wb_we_o, -- read/write wb_sel_o => wb_sel_o, -- byte enable wb_stb_o => wb_stb_o, -- strobe wb_cyc_o => wb_cyc_o, -- valid cycle wb_lock_o => wb_lock_o, -- exclusive access request wb_ack_i => wb_ack_i, -- transfer acknowledge wb_err_i => wb_err_i -- transfer error ); end generate; neorv32_wishbone_inst_false: if (MEM_EXT_EN = false) generate resp_bus(RESP_WISHBONE) <= resp_bus_entry_terminate_c; ext_timeout <= '0'; ext_access <= '0'; -- wb_adr_o <= (others => '0'); wb_dat_o <= (others => '0'); wb_we_o <= '0'; wb_sel_o <= (others => '0'); wb_stb_o <= '0'; wb_cyc_o <= '0'; wb_lock_o <= '0'; wb_tag_o <= (others => '0'); end generate; -- Execute In Place Module (XIP) ---------------------------------------------------------- -- ------------------------------------------------------------------------------------------- neorv32_xip_inst_true: if (IO_XIP_EN = true) generate neorv32_xip_inst: neorv32_xip port map ( -- global control -- clk_i => clk_i, -- global clock line rstn_i => sys_rstn, -- global reset line, low-active -- host access: control register access port -- ct_addr_i => p_bus.addr, -- address ct_rden_i => io_rden, -- read enable ct_wren_i => io_wren, -- write enable ct_data_i => p_bus.wdata, -- data in ct_data_o => resp_bus(RESP_XIP_CT).rdata, -- data out ct_ack_o => resp_bus(RESP_XIP_CT).ack, -- transfer acknowledge -- host access: instruction fetch access port (read-only) -- if_addr_i => p_bus.addr, -- address if_rden_i => p_bus.re, -- read enable if_data_o => resp_bus(RESP_XIP_IF).rdata, -- data out if_ack_o => resp_bus(RESP_XIP_IF).ack, -- transfer acknowledge -- status -- xip_en_o => xip_enable, -- XIP enable xip_acc_o => xip_access, -- pending XIP access xip_page_o => xip_page, -- XIP page -- clock generator -- clkgen_en_o => xip_cg_en, -- enable clock generator clkgen_i => clk_gen, -- SPI device interface -- spi_csn_o => xip_csn_o, -- chip-select, low-active spi_clk_o => xip_clk_o, -- serial clock spi_data_i => xip_sdi_i, -- device data output spi_data_o => xip_sdo_o -- controller data output ); resp_bus(RESP_XIP_CT).err <= '0'; -- no access error possible resp_bus(RESP_XIP_IF).err <= '0'; -- no access error possible end generate; neorv32_xip_inst_false: if (IO_XIP_EN = false) generate resp_bus(RESP_XIP_CT) <= resp_bus_entry_terminate_c; resp_bus(RESP_XIP_IF) <= resp_bus_entry_terminate_c; -- xip_enable <= '0'; xip_access <= '0'; xip_page <= (others => '0'); xip_cg_en <= '0'; xip_csn_o <= '1'; xip_clk_o <= '0'; xip_sdo_o <= '0'; end generate; -- **************************************************************************************************************************** -- IO/Peripheral Modules -- **************************************************************************************************************************** -- IO Access? ----------------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- io_acc <= '1' when (p_bus.addr(data_width_c-1 downto index_size_f(io_size_c)) = io_base_c(data_width_c-1 downto index_size_f(io_size_c))) else '0'; io_rden <= io_acc and p_bus.re and (not p_bus.src); -- PMA: no_execute for IO region io_wren <= io_acc and p_bus.we and and_reduce_f(p_bus.ben); -- only full-word write accesses are allowed (reduces HW complexity) -- Custom Functions Subsystem (CFS) ------------------------------------------------------- -- ------------------------------------------------------------------------------------------- neorv32_cfs_inst_true: if (IO_CFS_EN = true) generate neorv32_cfs_inst: neorv32_cfs generic map ( CFS_CONFIG => IO_CFS_CONFIG, -- custom CFS configuration generic CFS_IN_SIZE => IO_CFS_IN_SIZE, -- size of CFS input conduit in bits CFS_OUT_SIZE => IO_CFS_OUT_SIZE -- size of CFS output conduit in bits ) port map ( -- host access -- clk_i => clk_i, -- global clock line rstn_i => sys_rstn, -- global reset line, low-active, use as async addr_i => p_bus.addr, -- address rden_i => io_rden, -- read enable wren_i => io_wren, -- byte write enable data_i => p_bus.wdata, -- data in data_o => resp_bus(RESP_CFS).rdata, -- data out ack_o => resp_bus(RESP_CFS).ack, -- transfer acknowledge err_o => resp_bus(RESP_CFS).err, -- access error -- clock generator -- clkgen_en_o => cfs_cg_en, -- enable clock generator clkgen_i => clk_gen, -- "clock" inputs -- interrupt -- irq_o => cfs_irq, -- interrupt request -- custom io (conduit) -- cfs_in_i => cfs_in_i, -- custom inputs cfs_out_o => cfs_out_o -- custom outputs ); end generate; neorv32_cfs_inst_false: if (IO_CFS_EN = false) generate resp_bus(RESP_CFS) <= resp_bus_entry_terminate_c; -- cfs_cg_en <= '0'; cfs_irq <= '0'; cfs_out_o <= (others => '0'); end generate; -- General Purpose Input/Output Port (GPIO) ----------------------------------------------- -- ------------------------------------------------------------------------------------------- neorv32_gpio_inst_true: if (IO_GPIO_EN = true) generate neorv32_gpio_inst: neorv32_gpio port map ( -- host access -- clk_i => clk_i, -- global clock line addr_i => p_bus.addr, -- address rden_i => io_rden, -- read enable wren_i => io_wren, -- write enable data_i => p_bus.wdata, -- data in data_o => resp_bus(RESP_GPIO).rdata, -- data out ack_o => resp_bus(RESP_GPIO).ack, -- transfer acknowledge err_o => resp_bus(RESP_GPIO).err, -- transfer error -- parallel io -- gpio_o => gpio_o, gpio_i => gpio_i ); end generate; neorv32_gpio_inst_false: if (IO_GPIO_EN = false) generate resp_bus(RESP_GPIO) <= resp_bus_entry_terminate_c; -- gpio_o <= (others => '0'); end generate; -- Watch Dog Timer (WDT) ------------------------------------------------------------------ -- ------------------------------------------------------------------------------------------- neorv32_wdt_inst_true: if (IO_WDT_EN = true) generate neorv32_wdt_inst: neorv32_wdt generic map( DEBUG_EN => ON_CHIP_DEBUGGER_EN -- CPU debug mode implemented? ) port map ( -- host access -- clk_i => clk_i, -- global clock line rstn_i => ext_rstn, -- global reset line, low-active rden_i => io_rden, -- read enable wren_i => io_wren, -- write enable addr_i => p_bus.addr, -- address data_i => p_bus.wdata, -- data in data_o => resp_bus(RESP_WDT).rdata, -- data out ack_o => resp_bus(RESP_WDT).ack, -- transfer acknowledge -- CPU in debug mode? -- cpu_debug_i => debug_mode, -- clock generator -- clkgen_en_o => wdt_cg_en, -- enable clock generator clkgen_i => clk_gen, -- timeout event -- irq_o => wdt_irq, -- timeout IRQ rstn_o => wdt_rstn -- timeout reset, low_active, use it as async! ); resp_bus(RESP_WDT).err <= '0'; -- no access error possible end generate; neorv32_wdt_inst_false: if (IO_WDT_EN = false) generate resp_bus(RESP_WDT) <= resp_bus_entry_terminate_c; -- wdt_irq <= '0'; wdt_rstn <= '1'; wdt_cg_en <= '0'; end generate; -- Machine System Timer (MTIME) ----------------------------------------------------------- -- ------------------------------------------------------------------------------------------- neorv32_mtime_inst_true: if (IO_MTIME_EN = true) generate neorv32_mtime_inst: neorv32_mtime port map ( -- host access -- clk_i => clk_i, -- global clock line addr_i => p_bus.addr, -- address rden_i => io_rden, -- read enable wren_i => io_wren, -- write enable data_i => p_bus.wdata, -- data in data_o => resp_bus(RESP_MTIME).rdata, -- data out ack_o => resp_bus(RESP_MTIME).ack, -- transfer acknowledge -- time output for CPU -- time_o => mtime_time, -- current system time -- interrupt -- irq_o => mtime_irq -- interrupt request ); resp_bus(RESP_MTIME).err <= '0'; -- no access error possible end generate; neorv32_mtime_inst_false: if (IO_MTIME_EN = false) generate resp_bus(RESP_MTIME) <= resp_bus_entry_terminate_c; -- mtime_time <= mtime_i; -- use external machine timer time signal mtime_irq <= mtime_irq_i; -- use external machine timer interrupt end generate; -- system time output LO -- mtime_sync: process(clk_i) begin if rising_edge(clk_i) then -- buffer low word one clock cycle to compensate for MTIME's 1-cycle delay -- when overflowing from low-word to high-word -> only relevant for processor-external devices -- processor-internal devices (= the CPU) do not care about this delay offset as 64-bit MTIME.TIME -- cannot be accessed within a single cycle if (IO_MTIME_EN = true) then mtime_o(31 downto 0) <= mtime_time(31 downto 0); else mtime_o(31 downto 0) <= (others => '0'); end if; end if; end process mtime_sync; -- system time output HI -- mtime_o(63 downto 32) <= mtime_time(63 downto 32) when (IO_MTIME_EN = true) else (others => '0'); -- Primary Universal Asynchronous Receiver/Transmitter (UART0) ---------------------------- -- ------------------------------------------------------------------------------------------- neorv32_uart0_inst_true: if (IO_UART0_EN = true) generate neorv32_uart0_inst: neorv32_uart generic map ( UART_PRIMARY => true, -- true = primary UART (UART0), false = secondary UART (UART1) UART_RX_FIFO => IO_UART0_RX_FIFO, -- RX fifo depth, has to be a power of two, min 1 UART_TX_FIFO => IO_UART0_TX_FIFO -- TX fifo depth, has to be a power of two, min 1 ) port map ( -- host access -- clk_i => clk_i, -- global clock line addr_i => p_bus.addr, -- address rden_i => io_rden, -- read enable wren_i => io_wren, -- write enable data_i => p_bus.wdata, -- data in data_o => resp_bus(RESP_UART0).rdata, -- data out ack_o => resp_bus(RESP_UART0).ack, -- transfer acknowledge -- clock generator -- clkgen_en_o => uart0_cg_en, -- enable clock generator clkgen_i => clk_gen, -- com lines -- uart_txd_o => uart0_txd_o, uart_rxd_i => uart0_rxd_i, -- hardware flow control -- uart_rts_o => uart0_rts_o, -- UART.RX ready to receive ("RTR"), low-active, optional uart_cts_i => uart0_cts_i, -- UART.TX allowed to transmit, low-active, optional -- interrupts -- irq_rxd_o => uart0_rxd_irq, -- uart data received interrupt irq_txd_o => uart0_txd_irq -- uart transmission done interrupt ); resp_bus(RESP_UART0).err <= '0'; -- no access error possible end generate; neorv32_uart0_inst_false: if (IO_UART0_EN = false) generate resp_bus(RESP_UART0) <= resp_bus_entry_terminate_c; -- uart0_txd_o <= '0'; uart0_rts_o <= '0'; uart0_cg_en <= '0'; uart0_rxd_irq <= '0'; uart0_txd_irq <= '0'; end generate; -- Secondary Universal Asynchronous Receiver/Transmitter (UART1) -------------------------- -- ------------------------------------------------------------------------------------------- neorv32_uart1_inst_true: if (IO_UART1_EN = true) generate neorv32_uart1_inst: neorv32_uart generic map ( UART_PRIMARY => false, -- true = primary UART (UART0), false = secondary UART (UART1) UART_RX_FIFO => IO_UART1_RX_FIFO, -- RX fifo depth, has to be a power of two, min 1 UART_TX_FIFO => IO_UART1_TX_FIFO -- TX fifo depth, has to be a power of two, min 1 ) port map ( -- host access -- clk_i => clk_i, -- global clock line addr_i => p_bus.addr, -- address rden_i => io_rden, -- read enable wren_i => io_wren, -- write enable data_i => p_bus.wdata, -- data in data_o => resp_bus(RESP_UART1).rdata, -- data out ack_o => resp_bus(RESP_UART1).ack, -- transfer acknowledge -- clock generator -- clkgen_en_o => uart1_cg_en, -- enable clock generator clkgen_i => clk_gen, -- com lines -- uart_txd_o => uart1_txd_o, uart_rxd_i => uart1_rxd_i, -- hardware flow control -- uart_rts_o => uart1_rts_o, -- UART.RX ready to receive ("RTR"), low-active, optional uart_cts_i => uart1_cts_i, -- UART.TX allowed to transmit, low-active, optional -- interrupts -- irq_rxd_o => uart1_rxd_irq, -- uart data received interrupt irq_txd_o => uart1_txd_irq -- uart transmission done interrupt ); resp_bus(RESP_UART1).err <= '0'; -- no access error possible end generate; neorv32_uart1_inst_false: if (IO_UART1_EN = false) generate resp_bus(RESP_UART1) <= resp_bus_entry_terminate_c; -- uart1_txd_o <= '0'; uart1_rts_o <= '0'; uart1_cg_en <= '0'; uart1_rxd_irq <= '0'; uart1_txd_irq <= '0'; end generate; -- Serial Peripheral Interface (SPI) ------------------------------------------------------ -- ------------------------------------------------------------------------------------------- neorv32_spi_inst_true: if (IO_SPI_EN = true) generate neorv32_spi_inst: neorv32_spi port map ( -- host access -- clk_i => clk_i, -- global clock line addr_i => p_bus.addr, -- address rden_i => io_rden, -- read enable wren_i => io_wren, -- write enable data_i => p_bus.wdata, -- data in data_o => resp_bus(RESP_SPI).rdata, -- data out ack_o => resp_bus(RESP_SPI).ack, -- transfer acknowledge -- clock generator -- clkgen_en_o => spi_cg_en, -- enable clock generator clkgen_i => clk_gen, -- com lines -- spi_sck_o => spi_sck_o, -- SPI serial clock spi_sdo_o => spi_sdo_o, -- controller data out, peripheral data in spi_sdi_i => spi_sdi_i, -- controller data in, peripheral data out spi_csn_o => spi_csn_o, -- SPI CS -- interrupt -- irq_o => spi_irq -- transmission done interrupt ); resp_bus(RESP_SPI).err <= '0'; -- no access error possible end generate; neorv32_spi_inst_false: if (IO_SPI_EN = false) generate resp_bus(RESP_SPI) <= resp_bus_entry_terminate_c; -- spi_sck_o <= '0'; spi_sdo_o <= '0'; spi_csn_o <= (others => '1'); -- CSn lines are low-active spi_cg_en <= '0'; spi_irq <= '0'; end generate; -- Two-Wire Interface (TWI) --------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- neorv32_twi_inst_true: if (IO_TWI_EN = true) generate neorv32_twi_inst: neorv32_twi port map ( -- host access -- clk_i => clk_i, -- global clock line addr_i => p_bus.addr, -- address rden_i => io_rden, -- read enable wren_i => io_wren, -- write enable data_i => p_bus.wdata, -- data in data_o => resp_bus(RESP_TWI).rdata, -- data out ack_o => resp_bus(RESP_TWI).ack, -- transfer acknowledge -- clock generator -- clkgen_en_o => twi_cg_en, -- enable clock generator clkgen_i => clk_gen, -- com lines -- twi_sda_io => twi_sda_io, -- serial data line twi_scl_io => twi_scl_io, -- serial clock line -- interrupt -- irq_o => twi_irq -- transfer done IRQ ); resp_bus(RESP_TWI).err <= '0'; -- no access error possible end generate; neorv32_twi_inst_false: if (IO_TWI_EN = false) generate resp_bus(RESP_TWI) <= resp_bus_entry_terminate_c; -- twi_sda_io <= 'Z'; twi_scl_io <= 'Z'; twi_cg_en <= '0'; twi_irq <= '0'; end generate; -- Pulse-Width Modulation Controller (PWM) ------------------------------------------------ -- ------------------------------------------------------------------------------------------- neorv32_pwm_inst_true: if (IO_PWM_NUM_CH > 0) generate neorv32_pwm_inst: neorv32_pwm generic map ( NUM_CHANNELS => IO_PWM_NUM_CH -- number of PWM channels (0..60) ) port map ( -- host access -- clk_i => clk_i, -- global clock line addr_i => p_bus.addr, -- address rden_i => io_rden, -- read enable wren_i => io_wren, -- write enable data_i => p_bus.wdata, -- data in data_o => resp_bus(RESP_PWM).rdata, -- data out ack_o => resp_bus(RESP_PWM).ack, -- transfer acknowledge -- clock generator -- clkgen_en_o => pwm_cg_en, -- enable clock generator clkgen_i => clk_gen, -- pwm output channels -- pwm_o => pwm_o ); resp_bus(RESP_PWM).err <= '0'; -- no access error possible end generate; neorv32_pwm_inst_false: if (IO_PWM_NUM_CH = 0) generate resp_bus(RESP_PWM) <= resp_bus_entry_terminate_c; -- pwm_cg_en <= '0'; pwm_o <= (others => '0'); end generate; -- True Random Number Generator (TRNG) ---------------------------------------------------- -- ------------------------------------------------------------------------------------------- neorv32_trng_inst_true: if (IO_TRNG_EN = true) generate neorv32_trng_inst: neorv32_trng port map ( -- host access -- clk_i => clk_i, -- global clock line addr_i => p_bus.addr, -- address rden_i => io_rden, -- read enable wren_i => io_wren, -- write enable data_i => p_bus.wdata, -- data in data_o => resp_bus(RESP_TRNG).rdata, -- data out ack_o => resp_bus(RESP_TRNG).ack -- transfer acknowledge ); resp_bus(RESP_TRNG).err <= '0'; -- no access error possible end generate; neorv32_trng_inst_false: if (IO_TRNG_EN = false) generate resp_bus(RESP_TRNG) <= resp_bus_entry_terminate_c; end generate; -- Smart LED (WS2811/WS2812) Interface (NEOLED) ------------------------------------------- -- ------------------------------------------------------------------------------------------- neorv32_neoled_inst_true: if (IO_NEOLED_EN = true) generate neorv32_neoled_inst: neorv32_neoled generic map ( FIFO_DEPTH => IO_NEOLED_TX_FIFO -- TX FIFO depth (1..32k, power of two) ) port map ( -- host access -- clk_i => clk_i, -- global clock line addr_i => p_bus.addr, -- address rden_i => io_rden, -- read enable wren_i => io_wren, -- write enable data_i => p_bus.wdata, -- data in data_o => resp_bus(RESP_NEOLED).rdata, -- data out ack_o => resp_bus(RESP_NEOLED).ack, -- transfer acknowledge -- clock generator -- clkgen_en_o => neoled_cg_en, -- enable clock generator clkgen_i => clk_gen, -- interrupt -- irq_o => neoled_irq, -- interrupt request -- NEOLED output -- neoled_o => neoled_o -- serial async data line ); resp_bus(RESP_NEOLED).err <= '0'; -- no access error possible end generate; neorv32_neoled_inst_false: if (IO_NEOLED_EN = false) generate resp_bus(RESP_NEOLED) <= resp_bus_entry_terminate_c; -- neoled_cg_en <= '0'; neoled_irq <= '0'; neoled_o <= '0'; end generate; -- Stream Link Interface (SLINK) ---------------------------------------------------------- -- ------------------------------------------------------------------------------------------- neorv32_slink_inst_true: if (io_slink_en_c = true) generate neorv32_slink_inst: neorv32_slink generic map ( SLINK_NUM_TX => SLINK_NUM_TX, -- number of TX links (0..8) SLINK_NUM_RX => SLINK_NUM_RX, -- number of TX links (0..8) SLINK_TX_FIFO => SLINK_TX_FIFO, -- TX fifo depth, has to be a power of two SLINK_RX_FIFO => SLINK_RX_FIFO -- RX fifo depth, has to be a power of two ) port map ( -- host access -- clk_i => clk_i, -- global clock line addr_i => p_bus.addr, -- address rden_i => io_rden, -- read enable wren_i => io_wren, -- write enable data_i => p_bus.wdata, -- data in data_o => resp_bus(RESP_SLINK).rdata, -- data out ack_o => resp_bus(RESP_SLINK).ack, -- transfer acknowledge -- interrupt -- irq_tx_o => slink_tx_irq, -- transmission done irq_rx_o => slink_rx_irq, -- data received -- TX stream interfaces -- slink_tx_dat_o => slink_tx_dat_o, -- output data slink_tx_val_o => slink_tx_val_o, -- valid output slink_tx_rdy_i => slink_tx_rdy_i, -- ready to send -- RX stream interfaces -- slink_rx_dat_i => slink_rx_dat_i, -- input data slink_rx_val_i => slink_rx_val_i, -- valid input slink_rx_rdy_o => slink_rx_rdy_o -- ready to receive ); resp_bus(RESP_SLINK).err <= '0'; -- no access error possible end generate; neorv32_slink_inst_false: if (io_slink_en_c = false) generate resp_bus(RESP_SLINK) <= resp_bus_entry_terminate_c; -- slink_tx_irq <= '0'; slink_rx_irq <= '0'; slink_tx_dat_o <= (others => (others => '0')); slink_tx_val_o <= (others => '0'); slink_rx_rdy_o <= (others => '0'); end generate; -- External Interrupt Controller (XIRQ) --------------------------------------------------- -- ------------------------------------------------------------------------------------------- neorv32_xirq_inst_true: if (XIRQ_NUM_CH > 0) generate neorv32_slink_inst: neorv32_xirq generic map ( XIRQ_NUM_CH => XIRQ_NUM_CH, -- number of external IRQ channels (0..32) XIRQ_TRIGGER_TYPE => XIRQ_TRIGGER_TYPE, -- trigger type: 0=level, 1=edge XIRQ_TRIGGER_POLARITY => XIRQ_TRIGGER_POLARITY -- trigger polarity: 0=low-level/falling-edge, 1=high-level/rising-edge ) port map ( -- host access -- clk_i => clk_i, -- global clock line addr_i => p_bus.addr, -- address rden_i => io_rden, -- read enable wren_i => io_wren, -- write enable data_i => p_bus.wdata, -- data in data_o => resp_bus(RESP_XIRQ).rdata, -- data out ack_o => resp_bus(RESP_XIRQ).ack, -- transfer acknowledge -- external interrupt lines -- xirq_i => xirq_i, -- CPU interrupt -- cpu_irq_o => xirq_irq ); resp_bus(RESP_XIRQ).err <= '0'; -- no access error possible end generate; neorv32_xirq_inst_false: if (XIRQ_NUM_CH = 0) generate resp_bus(RESP_XIRQ) <= resp_bus_entry_terminate_c; -- xirq_irq <= '0'; end generate; -- General Purpose Timer (GPTMR) ---------------------------------------------------------- -- ------------------------------------------------------------------------------------------- neorv32_gptmr_inst_true: if (IO_GPTMR_EN = true) generate neorv32_gptmr_inst: neorv32_gptmr port map ( -- host access -- clk_i => clk_i, -- global clock line addr_i => p_bus.addr, -- address rden_i => io_rden, -- read enable wren_i => io_wren, -- write enable data_i => p_bus.wdata, -- data in data_o => resp_bus(RESP_GPTMR).rdata, -- data out ack_o => resp_bus(RESP_GPTMR).ack, -- transfer acknowledge -- clock generator -- clkgen_en_o => gptmr_cg_en, -- enable clock generator clkgen_i => clk_gen, -- interrupt -- irq_o => gptmr_irq -- transmission done interrupt ); resp_bus(RESP_GPTMR).err <= '0'; -- no access error possible end generate; neorv32_gptmr_inst_false: if (IO_GPTMR_EN = false) generate resp_bus(RESP_GPTMR) <= resp_bus_entry_terminate_c; -- gptmr_cg_en <= '0'; gptmr_irq <= '0'; end generate; -- System Configuration Information Memory (SYSINFO) -------------------------------------- -- ------------------------------------------------------------------------------------------- neorv32_sysinfo_inst: neorv32_sysinfo generic map ( -- General -- CLOCK_FREQUENCY => CLOCK_FREQUENCY, -- clock frequency of clk_i in Hz INT_BOOTLOADER_EN => INT_BOOTLOADER_EN, -- implement processor-internal bootloader? -- Physical memory protection (PMP) -- PMP_NUM_REGIONS => PMP_NUM_REGIONS, -- number of regions (0..64) -- internal Instruction memory -- MEM_INT_IMEM_EN => MEM_INT_IMEM_EN, -- implement processor-internal instruction memory MEM_INT_IMEM_SIZE => MEM_INT_IMEM_SIZE, -- size of processor-internal instruction memory in bytes -- Internal Data memory -- MEM_INT_DMEM_EN => MEM_INT_DMEM_EN, -- implement processor-internal data memory MEM_INT_DMEM_SIZE => MEM_INT_DMEM_SIZE, -- size of processor-internal data memory in bytes -- Internal Cache memory -- ICACHE_EN => ICACHE_EN, -- implement instruction cache ICACHE_NUM_BLOCKS => ICACHE_NUM_BLOCKS, -- i-cache: number of blocks (min 2), has to be a power of 2 ICACHE_BLOCK_SIZE => ICACHE_BLOCK_SIZE, -- i-cache: block size in bytes (min 4), has to be a power of 2 ICACHE_ASSOCIATIVITY => ICACHE_ASSOCIATIVITY, -- i-cache: associativity (min 1), has to be a power 2 -- External memory interface -- MEM_EXT_EN => MEM_EXT_EN, -- implement external memory bus interface? MEM_EXT_BIG_ENDIAN => MEM_EXT_BIG_ENDIAN, -- byte order: true=big-endian, false=little-endian -- On-Chip Debugger -- ON_CHIP_DEBUGGER_EN => ON_CHIP_DEBUGGER_EN, -- implement OCD? -- Processor peripherals -- IO_GPIO_EN => IO_GPIO_EN, -- implement general purpose input/output port unit (GPIO)? IO_MTIME_EN => IO_MTIME_EN, -- implement machine system timer (MTIME)? IO_UART0_EN => IO_UART0_EN, -- implement primary universal asynchronous receiver/transmitter (UART0)? IO_UART1_EN => IO_UART1_EN, -- implement secondary universal asynchronous receiver/transmitter (UART1)? IO_SPI_EN => IO_SPI_EN, -- implement serial peripheral interface (SPI)? IO_TWI_EN => IO_TWI_EN, -- implement two-wire interface (TWI)? IO_PWM_NUM_CH => IO_PWM_NUM_CH, -- number of PWM channels to implement IO_WDT_EN => IO_WDT_EN, -- implement watch dog timer (WDT)? IO_TRNG_EN => IO_TRNG_EN, -- implement true random number generator (TRNG)? IO_CFS_EN => IO_CFS_EN, -- implement custom functions subsystem (CFS)? IO_SLINK_EN => io_slink_en_c, -- implement stream link interface? IO_NEOLED_EN => IO_NEOLED_EN, -- implement NeoPixel-compatible smart LED interface (NEOLED)? IO_XIRQ_NUM_CH => XIRQ_NUM_CH, -- number of external interrupt (XIRQ) channels to implement IO_GPTMR_EN => IO_GPTMR_EN, -- implement general purpose timer (GPTMR)? IO_XIP_EN => IO_XIP_EN -- implement execute in place module (XIP)? ) port map ( -- host access -- clk_i => clk_i, -- global clock line addr_i => p_bus.addr, -- address rden_i => io_rden, -- read enable wren_i => io_wren, -- write enable data_o => resp_bus(RESP_SYSINFO).rdata, -- data out ack_o => resp_bus(RESP_SYSINFO).ack, -- transfer acknowledge err_o => resp_bus(RESP_SYSINFO).err -- transfer error ); -- ************************************************************************************************************************** -- On-Chip Debugger Complex -- ************************************************************************************************************************** -- On-Chip Debugger - Debug Module (DM) --------------------------------------------------- -- ------------------------------------------------------------------------------------------- neorv32_neorv32_debug_dm_true: if (ON_CHIP_DEBUGGER_EN = true) generate neorv32_debug_dm_inst: neorv32_debug_dm port map ( -- global control -- clk_i => clk_i, -- global clock line rstn_i => ext_rstn, -- external reset, low-active -- debug module interface (DMI) -- dmi_rstn_i => dmi.rstn, dmi_req_valid_i => dmi.req_valid, dmi_req_ready_o => dmi.req_ready, dmi_req_addr_i => dmi.req_addr, dmi_req_op_i => dmi.req_op, dmi_req_data_i => dmi.req_data, dmi_resp_valid_o => dmi.resp_valid, -- response valid when set dmi_resp_ready_i => dmi.resp_ready, -- ready to receive respond dmi_resp_data_o => dmi.resp_data, dmi_resp_err_o => dmi.resp_err, -- 0=ok, 1=error -- CPU bus access -- cpu_debug_i => debug_mode, -- CPU is in debug mode cpu_addr_i => p_bus.addr, -- address cpu_rden_i => p_bus.re, -- read enable cpu_wren_i => p_bus.we, -- write enable cpu_data_i => p_bus.wdata, -- data in cpu_data_o => resp_bus(RESP_OCD).rdata, -- data out cpu_ack_o => resp_bus(RESP_OCD).ack, -- transfer acknowledge -- CPU control -- cpu_ndmrstn_o => dci_ndmrstn, -- soc reset cpu_halt_req_o => dci_halt_req -- request hart to halt (enter debug mode) ); resp_bus(RESP_OCD).err <= '0'; -- no access error possible end generate; neorv32_debug_dm_false: if (ON_CHIP_DEBUGGER_EN = false) generate -- dmi.req_ready <= '0'; dmi.resp_valid <= '0'; dmi.resp_data <= (others => '0'); dmi.resp_err <= '0'; -- resp_bus(RESP_OCD) <= resp_bus_entry_terminate_c; dci_ndmrstn <= '1'; dci_halt_req <= '0'; end generate; -- On-Chip Debugger - Debug Transport Module (DTM) ---------------------------------------- -- ------------------------------------------------------------------------------------------- neorv32_neorv32_debug_dtm_true: if (ON_CHIP_DEBUGGER_EN = true) generate neorv32_debug_dtm_inst: neorv32_debug_dtm generic map ( IDCODE_VERSION => jtag_tap_idcode_version_c, -- version IDCODE_PARTID => jtag_tap_idcode_partid_c, -- part number IDCODE_MANID => jtag_tap_idcode_manid_c -- manufacturer id ) port map ( -- global control -- clk_i => clk_i, -- global clock line rstn_i => ext_rstn, -- external reset, low-active -- jtag connection -- jtag_trst_i => jtag_trst_i, jtag_tck_i => jtag_tck_i, jtag_tdi_i => jtag_tdi_i, jtag_tdo_o => jtag_tdo_o, jtag_tms_i => jtag_tms_i, -- debug module interface (DMI) -- dmi_rstn_o => dmi.rstn, dmi_req_valid_o => dmi.req_valid, dmi_req_ready_i => dmi.req_ready, -- DMI is allowed to make new requests when set dmi_req_addr_o => dmi.req_addr, dmi_req_op_o => dmi.req_op, -- 0=read, 1=write dmi_req_data_o => dmi.req_data, dmi_resp_valid_i => dmi.resp_valid, -- response valid when set dmi_resp_ready_o => dmi.resp_ready, -- ready to receive respond dmi_resp_data_i => dmi.resp_data, dmi_resp_err_i => dmi.resp_err -- 0=ok, 1=error ); end generate; neorv32_debug_dtm_false: if (ON_CHIP_DEBUGGER_EN = false) generate jtag_tdo_o <= jtag_tdi_i; -- feed-through -- dmi.rstn <= '0'; dmi.req_valid <= '0'; dmi.req_addr <= (others => '0'); dmi.req_op <= '0'; dmi.req_data <= (others => '0'); dmi.resp_ready <= '0'; end generate; end neorv32_top_rtl;
Go to most recent revision | Compare with Previous | Blame | View Log