URL
https://opencores.org/ocsvn/neorv32/neorv32/trunk
Subversion Repositories neorv32
[/] [neorv32/] [trunk/] [rtl/] [core/] [neorv32_uart.vhd] - Rev 74
Compare with Previous | Blame | View Log
-- ################################################################################################# -- # << NEORV32 - Universal Asynchronous Receiver and Transmitter (UART0/1) >> # -- # ********************************************************************************************* # -- # Frame configuration: 1 start bit, 8 bit data, parity bit (none/even/odd), 1 stop bit, # -- # programmable BAUD rate via clock pre-scaler and 12-bit BAUD value configuration register, # -- # optional configurable RX and TX FIFOs. # -- # # -- # Interrupts: Configurable RX and TX interrupt (both triggered by specific FIFO fill-levels) # -- # # -- # Support for RTS("RTR")/CTS hardware flow control: # -- # * uart_rts_o = 0: RX is ready to receive a new char, enabled via CTRL.ctrl_rts_en_c # -- # * uart_cts_i = 0: TX is allowed to send a new char, enabled via CTRL.ctrl_cts_en_c # -- # # -- # UART0 / UART1: # -- # This module is used for implementing UART0 and UART1. The UART_PRIMARY generic configures the # -- # interface register addresses and simulation outputs for UART0 (UART_PRIMARY = true) or UART1 # -- # (UART_PRIMARY = false). # -- # # -- # SIMULATION MODE: # -- # When the simulation mode is enabled (setting the ctrl.ctrl_sim_en_c bit) any write # -- # access to the TX register will not trigger any UART activity. Instead, the written data is # -- # output to the simulation environment. The lowest 8 bits of the written data are printed as # -- # ASCII char to the simulator console. # -- # This char is also stored to the file "neorv32.uartX.sim_mode.text.out" (where X = 0 for UART0 # -- # and X = 1 for UART1). The full 32-bit write data is also stored as 8-digit hexadecimal value # -- # to the file "neorv32.uartX.sim_mode.data.out" (where X = 0 for UART0 and X = 1 for UART1). # -- # No interrupts are triggered when in SIMULATION MODE. # -- # ********************************************************************************************* # -- # BSD 3-Clause License # -- # # -- # Copyright (c) 2022, Stephan Nolting. All rights reserved. # -- # # -- # Redistribution and use in source and binary forms, with or without modification, are # -- # permitted provided that the following conditions are met: # -- # # -- # 1. Redistributions of source code must retain the above copyright notice, this list of # -- # conditions and the following disclaimer. # -- # # -- # 2. Redistributions in binary form must reproduce the above copyright notice, this list of # -- # conditions and the following disclaimer in the documentation and/or other materials # -- # provided with the distribution. # -- # # -- # 3. Neither the name of the copyright holder nor the names of its contributors may be used to # -- # endorse or promote products derived from this software without specific prior written # -- # permission. # -- # # -- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS # -- # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # -- # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # -- # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # -- # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # -- # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED # -- # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # -- # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # -- # OF THE POSSIBILITY OF SUCH DAMAGE. # -- # ********************************************************************************************* # -- # The NEORV32 Processor - https://github.com/stnolting/neorv32 (c) Stephan Nolting # -- ################################################################################################# library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library neorv32; use neorv32.neorv32_package.all; use std.textio.all; entity neorv32_uart is generic ( UART_PRIMARY : boolean; -- true = primary UART (UART0), false = secondary UART (UART1) UART_RX_FIFO : natural; -- RX fifo depth, has to be a power of two, min 1 UART_TX_FIFO : natural -- TX fifo depth, has to be a power of two, min 1 ); port ( -- host access -- clk_i : in std_ulogic; -- global clock line addr_i : in std_ulogic_vector(31 downto 0); -- address rden_i : in std_ulogic; -- read enable wren_i : in std_ulogic; -- write enable data_i : in std_ulogic_vector(31 downto 0); -- data in data_o : out std_ulogic_vector(31 downto 0); -- data out ack_o : out std_ulogic; -- transfer acknowledge -- clock generator -- clkgen_en_o : out std_ulogic; -- enable clock generator clkgen_i : in std_ulogic_vector(07 downto 0); -- com lines -- uart_txd_o : out std_ulogic; uart_rxd_i : in std_ulogic; -- hardware flow control -- uart_rts_o : out std_ulogic; -- UART.RX ready to receive ("RTR"), low-active, optional uart_cts_i : in std_ulogic; -- UART.TX allowed to transmit, low-active, optional -- interrupts -- irq_rxd_o : out std_ulogic; -- uart data received interrupt irq_txd_o : out std_ulogic -- uart transmission done interrupt ); end neorv32_uart; architecture neorv32_uart_rtl of neorv32_uart is -- interface configuration for UART0 / UART1 -- constant uart_id_base_c : std_ulogic_vector(data_width_c-1 downto 0) := cond_sel_stdulogicvector_f(UART_PRIMARY, uart0_base_c, uart1_base_c); constant uart_id_size_c : natural := cond_sel_natural_f( UART_PRIMARY, uart0_size_c, uart1_size_c); constant uart_id_ctrl_addr_c : std_ulogic_vector(data_width_c-1 downto 0) := cond_sel_stdulogicvector_f(UART_PRIMARY, uart0_ctrl_addr_c, uart1_ctrl_addr_c); constant uart_id_rtx_addr_c : std_ulogic_vector(data_width_c-1 downto 0) := cond_sel_stdulogicvector_f(UART_PRIMARY, uart0_rtx_addr_c, uart1_rtx_addr_c); -- IO space: module base address -- constant hi_abb_c : natural := index_size_f(io_size_c)-1; -- high address boundary bit constant lo_abb_c : natural := index_size_f(uart_id_size_c); -- low address boundary bit -- simulation output configuration -- constant sim_screen_output_en_c : boolean := true; -- output lowest byte as char to simulator console when enabled constant sim_text_output_en_c : boolean := true; -- output lowest byte as char to text file when enabled constant sim_data_output_en_c : boolean := true; -- dump 32-bit TX word to file when enabled constant sim_uart_text_file_c : string := cond_sel_string_f(UART_PRIMARY, "neorv32.uart0.sim_mode.text.out", "neorv32.uart1.sim_mode.text.out"); constant sim_uart_data_file_c : string := cond_sel_string_f(UART_PRIMARY, "neorv32.uart0.sim_mode.data.out", "neorv32.uart1.sim_mode.data.out"); -- control register -- signal ctrl : std_ulogic_vector(31 downto 0); -- control register bits -- constant ctrl_baud00_c : natural := 0; -- r/w: baud config bit 0 constant ctrl_baud01_c : natural := 1; -- r/w: baud config bit 1 constant ctrl_baud02_c : natural := 2; -- r/w: baud config bit 2 constant ctrl_baud03_c : natural := 3; -- r/w: baud config bit 3 constant ctrl_baud04_c : natural := 4; -- r/w: baud config bit 4 constant ctrl_baud05_c : natural := 5; -- r/w: baud config bit 5 constant ctrl_baud06_c : natural := 6; -- r/w: baud config bit 6 constant ctrl_baud07_c : natural := 7; -- r/w: baud config bit 7 constant ctrl_baud08_c : natural := 8; -- r/w: baud config bit 8 constant ctrl_baud09_c : natural := 9; -- r/w: baud config bit 9 constant ctrl_baud10_c : natural := 10; -- r/w: baud config bit 10 constant ctrl_baud11_c : natural := 11; -- r/w: baud config bit 11 constant ctrl_sim_en_c : natural := 12; -- r/w: UART <<SIMULATION MODE>> enable constant ctrl_rx_empty_c : natural := 13; -- r/-: RX FIFO is empty constant ctrl_rx_half_c : natural := 14; -- r/-: RX FIFO is at least half-full constant ctrl_rx_full_c : natural := 15; -- r/-: RX FIFO is full constant ctrl_tx_empty_c : natural := 16; -- r/-: TX FIFO is empty constant ctrl_tx_half_c : natural := 17; -- r/-: TX FIFO is at least half-full constant ctrl_tx_full_c : natural := 18; -- r/-: TX FIFO is full -- ... constant ctrl_rts_en_c : natural := 20; -- r/w: enable hardware flow control: assert rts_o if ready to receive constant ctrl_cts_en_c : natural := 21; -- r/w: enable hardware flow control: send only if cts_i is asserted constant ctrl_pmode0_c : natural := 22; -- r/w: Parity config (0=even; 1=odd) constant ctrl_pmode1_c : natural := 23; -- r/w: Enable parity bit constant ctrl_prsc0_c : natural := 24; -- r/w: baud prsc bit 0 constant ctrl_prsc1_c : natural := 25; -- r/w: baud prsc bit 1 constant ctrl_prsc2_c : natural := 26; -- r/w: baud prsc bit 2 constant ctrl_cts_c : natural := 27; -- r/-: current state of CTS input constant ctrl_en_c : natural := 28; -- r/w: UART enable constant ctrl_rx_irq_c : natural := 29; -- r/w: RX IRQ mode: 1=FIFO at least half-full; 0=FIFO not empty constant ctrl_tx_irq_c : natural := 30; -- r/w: TX IRQ mode: 1=FIFO less than half-full; 0=FIFO not full constant ctrl_tx_busy_c : natural := 31; -- r/-: UART transmitter is busy -- data register flags -- constant data_lsb_c : natural := 0; -- r/-: received char LSB constant data_msb_c : natural := 7; -- r/-: received char MSB -- ... constant data_rx_perr_c : natural := 28; -- r/-: RX parity error constant data_rx_ferr_c : natural := 29; -- r/-: RX frame error constant data_rx_overr_c : natural := 30; -- r/-: RX data overrun constant data_rx_avail_c : natural := 31; -- r/-: RX data available -- access control -- signal acc_en : std_ulogic; -- module access enable signal addr : std_ulogic_vector(31 downto 0); -- access address signal wren : std_ulogic; -- word write enable signal rden : std_ulogic; -- read enable -- clock generator -- signal uart_clk : std_ulogic; -- numbers of bits in transmission frame -- signal num_bits : std_ulogic_vector(3 downto 0); -- hardware flow-control IO buffer -- signal uart_cts_ff : std_ulogic_vector(1 downto 0); signal uart_rts : std_ulogic; -- UART transmitter -- type tx_state_t is (S_TX_IDLE, S_TX_GET, S_TX_CHECK, S_TX_TRANSMIT, S_TX_SIM); type tx_engine_t is record state : tx_state_t; busy : std_ulogic; done : std_ulogic; bitcnt : std_ulogic_vector(03 downto 0); sreg : std_ulogic_vector(10 downto 0); baud_cnt : std_ulogic_vector(11 downto 0); cts : std_ulogic; -- allow new transmission when 1 end record; signal tx_engine : tx_engine_t; -- UART receiver -- type rx_state_t is (S_RX_IDLE, S_RX_RECEIVE); type rx_engine_t is record state : rx_state_t; done : std_ulogic; sync : std_ulogic_vector(04 downto 0); bitcnt : std_ulogic_vector(03 downto 0); sreg : std_ulogic_vector(09 downto 0); baud_cnt : std_ulogic_vector(11 downto 0); overr : std_ulogic; rtr : std_ulogic; -- ready to receive when 1 end record; signal rx_engine : rx_engine_t; -- TX FIFO -- type tx_buffer_t is record we : std_ulogic; -- write enable re : std_ulogic; -- read enable clear : std_ulogic; -- sync reset, high-active wdata : std_ulogic_vector(31 downto 0); -- write data rdata : std_ulogic_vector(31 downto 0); -- read data avail : std_ulogic; -- data available? free : std_ulogic; -- free entry available? half : std_ulogic; -- half full end record; signal tx_buffer : tx_buffer_t; -- RX FIFO -- type rx_buffer_t is record we : std_ulogic; -- write enable re : std_ulogic; -- read enable clear : std_ulogic; -- sync reset, high-active wdata : std_ulogic_vector(9 downto 0); -- write data rdata : std_ulogic_vector(9 downto 0); -- read data avail : std_ulogic; -- data available? free : std_ulogic; -- free entry available? half : std_ulogic; -- half full end record; signal rx_buffer : rx_buffer_t; -- interrupt generator -- type irq_t is record set : std_ulogic; buf : std_ulogic_vector(1 downto 0); end record; signal rx_irq, tx_irq : irq_t; begin -- Sanity Checks -------------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- assert not (is_power_of_two_f(UART_RX_FIFO) = false) report "NEORV32 PROCESSOR CONFIG ERROR: UART" & cond_sel_string_f(UART_PRIMARY, "0", "1") & " <UART_RX_FIFO> has to be a power of two." severity error; assert not (is_power_of_two_f(UART_TX_FIFO) = false) report "NEORV32 PROCESSOR CONFIG ERROR: UART" & cond_sel_string_f(UART_PRIMARY, "0", "1") & " <UART_TX_FIFO> has to be a power of two." severity error; -- Access Control ------------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- acc_en <= '1' when (addr_i(hi_abb_c downto lo_abb_c) = uart_id_base_c(hi_abb_c downto lo_abb_c)) else '0'; addr <= uart_id_base_c(31 downto lo_abb_c) & addr_i(lo_abb_c-1 downto 2) & "00"; -- word aligned wren <= acc_en and wren_i; rden <= acc_en and rden_i; -- Read/Write Access ---------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- rw_access: process(clk_i) begin if rising_edge(clk_i) then -- bus access acknowledge -- ack_o <= wren or rden; -- write access -- if (wren = '1') then if (addr = uart_id_ctrl_addr_c) then ctrl <= (others => '0'); ctrl(ctrl_baud11_c downto ctrl_baud00_c) <= data_i(ctrl_baud11_c downto ctrl_baud00_c); ctrl(ctrl_sim_en_c) <= data_i(ctrl_sim_en_c); ctrl(ctrl_pmode1_c downto ctrl_pmode0_c) <= data_i(ctrl_pmode1_c downto ctrl_pmode0_c); ctrl(ctrl_prsc2_c downto ctrl_prsc0_c) <= data_i(ctrl_prsc2_c downto ctrl_prsc0_c); ctrl(ctrl_rts_en_c) <= data_i(ctrl_rts_en_c); ctrl(ctrl_cts_en_c) <= data_i(ctrl_cts_en_c); ctrl(ctrl_rx_irq_c) <= data_i(ctrl_rx_irq_c); ctrl(ctrl_tx_irq_c) <= data_i(ctrl_tx_irq_c); ctrl(ctrl_en_c) <= data_i(ctrl_en_c); end if; end if; -- read access -- data_o <= (others => '0'); if (rden = '1') then if (addr = uart_id_ctrl_addr_c) then data_o(ctrl_baud11_c downto ctrl_baud00_c) <= ctrl(ctrl_baud11_c downto ctrl_baud00_c); data_o(ctrl_sim_en_c) <= ctrl(ctrl_sim_en_c); data_o(ctrl_pmode1_c downto ctrl_pmode0_c) <= ctrl(ctrl_pmode1_c downto ctrl_pmode0_c); data_o(ctrl_prsc2_c downto ctrl_prsc0_c) <= ctrl(ctrl_prsc2_c downto ctrl_prsc0_c); data_o(ctrl_rts_en_c) <= ctrl(ctrl_rts_en_c); data_o(ctrl_cts_en_c) <= ctrl(ctrl_cts_en_c); data_o(ctrl_rx_empty_c) <= not rx_buffer.avail; data_o(ctrl_rx_half_c) <= rx_buffer.half; data_o(ctrl_rx_full_c) <= not rx_buffer.free; data_o(ctrl_tx_empty_c) <= not tx_buffer.avail; data_o(ctrl_tx_half_c) <= tx_buffer.half; data_o(ctrl_tx_full_c) <= not tx_buffer.free; data_o(ctrl_en_c) <= ctrl(ctrl_en_c); data_o(ctrl_rx_irq_c) <= ctrl(ctrl_rx_irq_c) and bool_to_ulogic_f(boolean(UART_RX_FIFO > 1)); -- tie to zero if UART_RX_FIFO = 1 data_o(ctrl_tx_irq_c) <= ctrl(ctrl_tx_irq_c) and bool_to_ulogic_f(boolean(UART_TX_FIFO > 1)); -- tie to zero if UART_TX_FIFO = 1 data_o(ctrl_tx_busy_c) <= tx_engine.busy; data_o(ctrl_cts_c) <= uart_cts_ff(1); else -- uart_id_rtx_addr_c data_o(data_msb_c downto data_lsb_c) <= rx_buffer.rdata(7 downto 0); data_o(data_rx_perr_c) <= rx_buffer.rdata(8); data_o(data_rx_ferr_c) <= rx_buffer.rdata(9); data_o(data_rx_overr_c) <= rx_engine.overr; data_o(data_rx_avail_c) <= rx_buffer.avail; -- data available (valid?) end if; end if; end if; end process rw_access; -- number of bits to be sampled -- -- if parity flag is ENABLED: 11 bit -> "1011" (1 start bit + 8 data bits + 1 parity bit + 1 stop bit) -- if parity flag is DISABLED: 10 bit -> "1010" (1 start bit + 8 data bits + 1 stop bit) num_bits <= "1011" when (ctrl(ctrl_pmode1_c) = '1') else "1010"; -- Clock Selection ------------------------------------------------------------------------ -- ------------------------------------------------------------------------------------------- -- clock enable -- clkgen_en_o <= ctrl(ctrl_en_c); -- uart clock select -- uart_clk <= clkgen_i(to_integer(unsigned(ctrl(ctrl_prsc2_c downto ctrl_prsc0_c)))); -- TX FIFO -------------------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- tx_engine_fifo_inst: neorv32_fifo generic map ( FIFO_DEPTH => UART_TX_FIFO, -- number of fifo entries; has to be a power of two; min 1 FIFO_WIDTH => 32, -- size of data elements in fifo (32-bit only for simulation) FIFO_RSYNC => false, -- async read FIFO_SAFE => true -- safe access ) port map ( -- control -- clk_i => clk_i, -- clock, rising edge rstn_i => '1', -- async reset, low-active clear_i => tx_buffer.clear, -- sync reset, high-active level_o => open, half_o => tx_buffer.half, -- FIFO at least half-full -- write port -- wdata_i => tx_buffer.wdata, -- write data we_i => tx_buffer.we, -- write enable free_o => tx_buffer.free, -- at least one entry is free when set -- read port -- re_i => tx_buffer.re, -- read enable rdata_o => tx_buffer.rdata, -- read data avail_o => tx_buffer.avail -- data available when set ); -- control -- tx_buffer.clear <= not ctrl(ctrl_en_c); -- write access -- tx_buffer.we <= '1' when (wren = '1') and (addr = uart_id_rtx_addr_c) else '0'; tx_buffer.wdata <= data_i; -- UART Transmitter Engine ---------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- uart_tx_engine: process(clk_i) begin if rising_edge(clk_i) then -- defaults -- uart_txd_o <= '1'; -- keep TX line idle (=high) if waiting for permission to start sending (->CTS) tx_buffer.re <= '0'; tx_engine.done <= '0'; -- FSM -- if (ctrl(ctrl_en_c) = '0') then -- disabled tx_engine.state <= S_TX_IDLE; else case tx_engine.state is when S_TX_IDLE => -- wait for new data to send -- ------------------------------------------------------------ if (tx_buffer.avail = '1') then -- new data available if (ctrl(ctrl_sim_en_c) = '0') then -- normal mode tx_engine.state <= S_TX_GET; else -- simulation mode tx_engine.state <= S_TX_SIM; end if; tx_buffer.re <= '1'; end if; when S_TX_GET => -- get new data from buffer and prepare transmission -- ------------------------------------------------------------ tx_engine.baud_cnt <= ctrl(ctrl_baud11_c downto ctrl_baud00_c); tx_engine.bitcnt <= num_bits; if (ctrl(ctrl_pmode1_c) = '1') then -- add parity flag -- stop bit & parity bit & data (8-bit) & start bit tx_engine.sreg <= '1' & (xor_reduce_f(tx_buffer.rdata(7 downto 0)) xor ctrl(ctrl_pmode0_c)) & tx_buffer.rdata(7 downto 0) & '0'; else -- (dummy fill-bit &) stop bit & data (8-bit) & start bit tx_engine.sreg <= '1' & '1' & tx_buffer.rdata(7 downto 0) & '0'; end if; tx_engine.state <= S_TX_CHECK; when S_TX_CHECK => -- check if allowed to send -- ------------------------------------------------------------ if (tx_engine.cts = '1') then -- clear to send tx_engine.state <= S_TX_TRANSMIT; end if; when S_TX_TRANSMIT => -- transmit data -- ------------------------------------------------------------ if (uart_clk = '1') then if (or_reduce_f(tx_engine.baud_cnt) = '0') then -- bit done? tx_engine.baud_cnt <= ctrl(ctrl_baud11_c downto ctrl_baud00_c); tx_engine.bitcnt <= std_ulogic_vector(unsigned(tx_engine.bitcnt) - 1); tx_engine.sreg <= '1' & tx_engine.sreg(tx_engine.sreg'left downto 1); else tx_engine.baud_cnt <= std_ulogic_vector(unsigned(tx_engine.baud_cnt) - 1); end if; end if; uart_txd_o <= tx_engine.sreg(0); if (or_reduce_f(tx_engine.bitcnt) = '0') then -- all bits send? tx_engine.done <= '1'; -- sending done tx_engine.state <= S_TX_IDLE; end if; when S_TX_SIM => -- simulation mode output -- ------------------------------------------------------------ tx_engine.state <= S_TX_IDLE; when others => -- undefined -- ------------------------------------------------------------ tx_engine.state <= S_TX_IDLE; end case; end if; end if; end process uart_tx_engine; -- transmitter busy -- tx_engine.busy <= '0' when (tx_engine.state = S_TX_IDLE) else '1'; -- UART Receiver Engine ------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- uart_rx_engine: process(clk_i) begin if rising_edge(clk_i) then -- input synchronizer -- rx_engine.sync <= uart_rxd_i & rx_engine.sync(rx_engine.sync'left downto 1); -- default -- rx_engine.done <= '0'; -- FSM -- if (ctrl(ctrl_en_c) = '0') then -- disabled rx_engine.overr <= '0'; rx_engine.state <= S_RX_IDLE; else case rx_engine.state is when S_RX_IDLE => -- idle; prepare receive -- ------------------------------------------------------------ rx_engine.baud_cnt <= '0' & ctrl(ctrl_baud11_c downto ctrl_baud01_c); -- half baud delay at the beginning to sample in the middle of each bit rx_engine.bitcnt <= num_bits; if (rx_engine.sync(3 downto 0) = "0011") then -- start bit? (falling edge) rx_engine.state <= S_RX_RECEIVE; end if; when S_RX_RECEIVE => -- receive data -- ------------------------------------------------------------ if (uart_clk = '1') then if (or_reduce_f(rx_engine.baud_cnt) = '0') then -- bit done rx_engine.baud_cnt <= ctrl(ctrl_baud11_c downto ctrl_baud00_c); rx_engine.bitcnt <= std_ulogic_vector(unsigned(rx_engine.bitcnt) - 1); rx_engine.sreg <= rx_engine.sync(2) & rx_engine.sreg(rx_engine.sreg'left downto 1); else rx_engine.baud_cnt <= std_ulogic_vector(unsigned(rx_engine.baud_cnt) - 1); end if; end if; if (or_reduce_f(rx_engine.bitcnt) = '0') then -- all bits received? rx_engine.done <= '1'; -- receiving done rx_engine.state <= S_RX_IDLE; end if; when others => -- undefined -- ------------------------------------------------------------ rx_engine.state <= S_RX_IDLE; end case; -- overrun flag -- if (rden = '1') and (addr = uart_id_rtx_addr_c) then -- clear when reading data register rx_engine.overr <= '0'; elsif (rx_buffer.we = '1') and (rx_buffer.free = '0') then -- write to full FIFO rx_engine.overr <= '1'; end if; end if; end if; end process uart_rx_engine; -- RX engine ready for a new char? -- rx_engine.rtr <= '1' when (rx_engine.state = S_RX_IDLE) and (ctrl(ctrl_en_c) = '1') else '0'; -- RX FIFO -------------------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- rx_engine_fifo_inst: neorv32_fifo generic map ( FIFO_DEPTH => UART_RX_FIFO, -- number of fifo entries; has to be a power of two; min 1 FIFO_WIDTH => 10, -- size of data elements in fifo FIFO_RSYNC => false, -- async read FIFO_SAFE => true -- safe access ) port map ( -- control -- clk_i => clk_i, -- clock, rising edge rstn_i => '1', -- async reset, low-active clear_i => rx_buffer.clear, -- sync reset, high-active level_o => open, half_o => rx_buffer.half, -- FIFO at least half-full -- write port -- wdata_i => rx_buffer.wdata, -- write data we_i => rx_buffer.we, -- write enable free_o => rx_buffer.free, -- at least one entry is free when set -- read port -- re_i => rx_buffer.re, -- read enable rdata_o => rx_buffer.rdata, -- read data avail_o => rx_buffer.avail -- data available when set ); -- control -- rx_buffer.clear <= not ctrl(ctrl_en_c); -- read/write access -- rx_buffer.wdata(7 downto 0) <= rx_engine.sreg(7 downto 0) when (ctrl(ctrl_pmode1_c) = '1') else rx_engine.sreg(8 downto 1); -- RX data rx_buffer.wdata(8) <= ctrl(ctrl_pmode1_c) and (xor_reduce_f(rx_engine.sreg(8 downto 0)) xor ctrl(ctrl_pmode0_c)); -- parity error flag rx_buffer.wdata(9) <= not rx_engine.sreg(9); -- frame error flag: check stop bit (error if not set) rx_buffer.we <= '1' when (rx_engine.bitcnt = "0000") and (rx_engine.state = S_RX_RECEIVE) else '0'; -- RX complete rx_buffer.re <= '1' when (rden = '1') and (addr = uart_id_rtx_addr_c) else '0'; -- Hardware Flow Control ------------------------------------------------------------------ -- ------------------------------------------------------------------------------------------- tx_engine.cts <= (not uart_cts_ff(1)) when (ctrl(ctrl_cts_en_c) = '1') else '1'; -- input is low-active, internal signal is high-active uart_rts <= (not rx_engine.rtr) when (ctrl(ctrl_rts_en_c) = '1') else '0'; -- output is low-active -- flow-control input/output synchronizer -- flow_control_buffer: process(clk_i) begin if rising_edge(clk_i) then -- should be mapped to IOBs uart_cts_ff <= uart_cts_ff(0) & uart_cts_i; uart_rts_o <= uart_rts; end if; end process flow_control_buffer; -- Interrupt Generator -------------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- irq_type: process(ctrl, tx_buffer, rx_buffer, tx_engine.done) begin -- TX interrupt -- if (UART_TX_FIFO = 1) or (ctrl(ctrl_tx_irq_c) = '0') then tx_irq.set <= tx_buffer.free and tx_engine.done; -- fire IRQ if FIFO is not full else tx_irq.set <= (not tx_buffer.half) and tx_engine.done; -- fire IRQ if FIFO is less than half-full end if; -- RX interrupt -- if (UART_RX_FIFO = 1) or (ctrl(ctrl_rx_irq_c) = '0') then rx_irq.set <= rx_buffer.avail; -- fire IRQ if FIFO is not empty else rx_irq.set <= rx_buffer.half; -- fire IRQ if FIFO is at least half-full end if; end process irq_type; -- interrupt edge detector -- irq_detect: process(clk_i) begin if rising_edge(clk_i) then if (ctrl(ctrl_en_c) = '0') then tx_irq.buf <= "00"; rx_irq.buf <= "00"; else tx_irq.buf <= tx_irq.buf(0) & tx_irq.set; rx_irq.buf <= rx_irq.buf(0) & rx_irq.set; end if; end if; end process irq_detect; -- IRQ requests to CPU -- irq_txd_o <= '1' when (tx_irq.buf = "01") else '0'; irq_rxd_o <= '1' when (rx_irq.buf = "01") else '0'; -- SIMULATION Transmitter ----------------------------------------------------------------- -- ------------------------------------------------------------------------------------------- simulation_transmitter: if (is_simulation_c = true) generate -- for SIMULATION ONLY! sim_output: process(clk_i) file file_uart_text_out : text open write_mode is sim_uart_text_file_c; file file_uart_data_out : text open write_mode is sim_uart_data_file_c; variable char_v : integer; variable line_screen_v : line; -- we need several line variables here since "writeline" seems to flush the source variable variable line_text_v : line; variable line_data_v : line; begin if rising_edge(clk_i) then if (tx_engine.state = S_TX_SIM) then -- UART simulation mode -- print lowest byte as ASCII char -- char_v := to_integer(unsigned(tx_buffer.rdata(7 downto 0))); if (char_v >= 128) then -- out of range? char_v := 0; end if; if (char_v /= 10) and (char_v /= 13) then -- skip line breaks - they are issued via "writeline" if (sim_screen_output_en_c = true) then write(line_screen_v, character'val(char_v)); end if; if (sim_text_output_en_c = true) then write(line_text_v, character'val(char_v)); end if; end if; if (char_v = 10) then -- line break: write to screen and text file if (sim_screen_output_en_c = true) then writeline(output, line_screen_v); end if; if (sim_text_output_en_c = true) then writeline(file_uart_text_out, line_text_v); end if; end if; -- dump raw data as 8 hex chars to file -- if (sim_data_output_en_c = true) then for x in 7 downto 0 loop write(line_data_v, to_hexchar_f(tx_buffer.rdata(3+x*4 downto 0+x*4))); -- write in hex form end loop; -- x writeline(file_uart_data_out, line_data_v); end if; end if; end if; end process sim_output; end generate; end neorv32_uart_rtl;