URL
https://opencores.org/ocsvn/neorv32/neorv32/trunk
Subversion Repositories neorv32
[/] [neorv32/] [trunk/] [sw/] [example/] [demo_spi/] [main.c] - Rev 69
Compare with Previous | Blame | View Log
// ################################################################################################# // # << NEORV32 - SPI Bus Explorer Demo Program >> # // # ********************************************************************************************* # // # BSD 3-Clause License # // # # // # Copyright (c) 2021, Stephan Nolting. All rights reserved. # // # # // # Redistribution and use in source and binary forms, with or without modification, are # // # permitted provided that the following conditions are met: # // # # // # 1. Redistributions of source code must retain the above copyright notice, this list of # // # conditions and the following disclaimer. # // # # // # 2. Redistributions in binary form must reproduce the above copyright notice, this list of # // # conditions and the following disclaimer in the documentation and/or other materials # // # provided with the distribution. # // # # // # 3. Neither the name of the copyright holder nor the names of its contributors may be used to # // # endorse or promote products derived from this software without specific prior written # // # permission. # // # # // # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS # // # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # // # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # // # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # // # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # // # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED # // # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # // # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # // # OF THE POSSIBILITY OF SUCH DAMAGE. # // # ********************************************************************************************* # // # The NEORV32 Processor - https://github.com/stnolting/neorv32 (c) Stephan Nolting # // ################################################################################################# /**********************************************************************//** * @file demo_spi/main.c * @author Stephan Nolting * @brief SPI bus explorer (execute SPI transactions by hand). **************************************************************************/ #include <neorv32.h> #include <string.h> /**********************************************************************//** * @name User configuration **************************************************************************/ /**@{*/ /** UART BAUD rate */ #define BAUD_RATE 19200 /**@}*/ // Global variables uint32_t spi_configured; uint32_t spi_size; // data quantity in bytes // Prototypes void spi_cs(uint32_t type); void spi_trans(void); void spi_setup(void); void flash_write(void); void flash_read(void); uint32_t hexstr_to_uint(char *buffer, uint8_t length); void aux_print_hex_byte(uint8_t byte); /**********************************************************************//** * SPI flash commands **************************************************************************/ enum SPI_FLASH_CMD { SPI_FLASH_CMD_WRITE = 0x02, /**< Write data */ SPI_FLASH_CMD_READ = 0x03, /**< Read data */ SPI_FLASH_CMD_READ_SR = 0x05, /**< Get status register */ SPI_FLASH_CMD_WREN = 0x06 /**< Enable write access */ }; /**********************************************************************//** * This program provides an interactive console to communicate with SPI devices. * * @note This program requires the UART and the SPI to be synthesized. * * @return Irrelevant. **************************************************************************/ int main() { char buffer[16]; int length = 0; // capture all exceptions and give debug info via UART // this is not required, but keeps us safe neorv32_rte_setup(); // init UART0 at default baud rate, no parity bits, ho hw flow control neorv32_uart0_setup(BAUD_RATE, PARITY_NONE, FLOW_CONTROL_NONE); // check if UART0 unit is implemented at all if (neorv32_uart0_available() == 0) { return 1; } // intro neorv32_uart0_printf("\n<<< SPI Bus Explorer >>>\n\n"); // check if SPI unit is implemented at all if (neorv32_spi_available() == 0) { neorv32_uart0_printf("No SPI unit implemented."); return 1; } // info neorv32_uart0_printf("This program allows to create SPI transfers by hand.\n" "Type 'help' to see the help menu.\n\n"); // disable and reset SPI module NEORV32_SPI.CTRL = 0; spi_configured = 0; // SPI not configured yet spi_size = 0; // Main menu for (;;) { neorv32_uart0_printf("SPI_EXPLORER:> "); length = neorv32_uart0_scan(buffer, 15, 1); neorv32_uart0_printf("\n"); if (!length) // nothing to be done continue; // decode input and execute command if (!strcmp(buffer, "help")) { neorv32_uart0_printf("Available commands:\n" " help - show this text\n" " setup - configure SPI module (clock speed and mode, data size)\n" " cs-en - enable CS line (set low)\n" " cs-dis - disable CS line (set high)\n" " trans - execute a transmission (write & read to/from SPI)\n" "\n" " flash-wr - write binary file to SPI flash\n" " flash-rd - dump SPI flash\n" "\n" "Configure the SPI module using 'setup'. Enable a certain module using 'cs-en',\n" "then transfer data using 'trans' and disable the module again using 'cs-dis'.\n" "\n" "Standard SPI flash and EEPROM memories can be programmed/read\n" "via 'flash-wr' and 'flash-rd'.\n\n"); } else if (!strcmp(buffer, "setup")) { spi_setup(); } else if (!strcmp(buffer, "cs-en")) { spi_cs(1); } else if (!strcmp(buffer, "cs-dis")) { spi_cs(0); } else if (!strcmp(buffer, "trans")) { spi_trans(); } else if (!strcmp(buffer, "flash-wr")) { flash_write(); } else if (!strcmp(buffer, "flash-rd")) { flash_read(); } else { neorv32_uart0_printf("Invalid command. Type 'help' to see all commands.\n"); } } return 0; } /**********************************************************************//** * Enable or disable chip-select line * * @param[in] type 0=disable, 1=enable **************************************************************************/ void spi_cs(uint32_t type) { char terminal_buffer[2]; uint8_t channel; if (type) { neorv32_uart0_printf("Select chip-select line to enable (set low) [0..7]: "); } else { neorv32_uart0_printf("Select chip-select line to disable (set high) [0..7]: "); } while (1) { neorv32_uart0_scan(terminal_buffer, 2, 1); // 1 hex char plus '\0' channel = (uint8_t)hexstr_to_uint(terminal_buffer, strlen(terminal_buffer)); if (channel > 7) { neorv32_uart0_printf("\nInvalid channel selection!\n"); return; } else { neorv32_uart0_printf("\n"); break; } } if (type) { neorv32_spi_cs_en(channel); } else { neorv32_spi_cs_dis(channel); } } /**********************************************************************//** * SPI data transfer **************************************************************************/ void spi_trans(void) { char terminal_buffer[9]; if (spi_configured == 0) { neorv32_uart0_printf("SPI module not configured yet! Use 'setup' to configure SPI module.\n"); return; } neorv32_uart0_printf("Enter TX data (%u hex chars): 0x", spi_size*2); neorv32_uart0_scan(terminal_buffer, spi_size*2+1, 1); uint32_t tx_data = (uint32_t)hexstr_to_uint(terminal_buffer, strlen(terminal_buffer)); uint32_t rx_data = neorv32_spi_trans(tx_data); if (spi_size == 1) { neorv32_uart0_printf("\nTX data: 0x"); aux_print_hex_byte((uint8_t)(tx_data)); neorv32_uart0_printf("\nRX data: 0x"); aux_print_hex_byte((uint8_t)(rx_data)); neorv32_uart0_printf("\n"); } else if (spi_size == 2) { neorv32_uart0_printf("\nTX data: 0x"); aux_print_hex_byte((uint8_t)(tx_data >> 8)); aux_print_hex_byte((uint8_t)(tx_data)); neorv32_uart0_printf("\nRX data: 0x"); aux_print_hex_byte((uint8_t)(rx_data >> 8)); aux_print_hex_byte((uint8_t)(rx_data)); neorv32_uart0_printf("\n"); } else if (spi_size == 3) { neorv32_uart0_printf("\nTX data: 0x"); aux_print_hex_byte((uint8_t)(tx_data >> 16)); aux_print_hex_byte((uint8_t)(tx_data >> 8)); aux_print_hex_byte((uint8_t)(tx_data)); neorv32_uart0_printf("\nRX data: 0x"); aux_print_hex_byte((uint8_t)(rx_data >> 16)); aux_print_hex_byte((uint8_t)(rx_data >> 8)); aux_print_hex_byte((uint8_t)(rx_data)); neorv32_uart0_printf("\n"); } else { neorv32_uart0_printf("\nTX data: 0x%x\n", tx_data); neorv32_uart0_printf("RX data: 0x%x\n", rx_data); } } /**********************************************************************//** * Configure SPI module **************************************************************************/ void spi_setup(void) { char terminal_buffer[9]; uint8_t spi_prsc, clk_phase, clk_pol, data_size; uint32_t tmp; // ---- SPI clock ---- while (1) { neorv32_uart0_printf("Select SPI clock prescaler (0..7): "); neorv32_uart0_scan(terminal_buffer, 2, 1); tmp = (uint32_t)hexstr_to_uint(terminal_buffer, strlen(terminal_buffer)); if (tmp > 8) { neorv32_uart0_printf("\nInvalid selection!\n"); } else { spi_prsc = (uint8_t)tmp; break; } } uint32_t div = 0; switch (spi_prsc) { case 0: div = 2 * 2; break; case 1: div = 2 * 4; break; case 2: div = 2 * 8; break; case 3: div = 2 * 64; break; case 4: div = 2 * 128; break; case 5: div = 2 * 1024; break; case 6: div = 2 * 2048; break; case 7: div = 2 * 4096; break; default: div = 0; break; } uint32_t clock = NEORV32_SYSINFO.CLK / div; neorv32_uart0_printf("\n+ New SPI clock speed = %u Hz\n", clock); // ---- SPI clock mode ---- while (1) { neorv32_uart0_printf("Select SPI clock mode (0..3): "); neorv32_uart0_scan(terminal_buffer, 2, 1); tmp = (uint32_t)hexstr_to_uint(terminal_buffer, strlen(terminal_buffer)); if (tmp > 4) { neorv32_uart0_printf("\nInvalid selection!\n"); } else { clk_pol = (uint8_t)((tmp >> 1) & 1); clk_phase = (uint8_t)(tmp & 1); break; } } neorv32_uart0_printf("\n+ New SPI clock mode = %u\n", tmp); // ---- SPI transfer data quantity ---- while (1) { neorv32_uart0_printf("Select SPI data transfer size in bytes (1,2,3,4): "); neorv32_uart0_scan(terminal_buffer, 2, 1); tmp = (uint32_t)hexstr_to_uint(terminal_buffer, strlen(terminal_buffer)); if ( (tmp < 1) || (tmp > 4)) { neorv32_uart0_printf("\nInvalid selection!\n"); } else { data_size = (uint8_t)(tmp - 1); break; } } neorv32_uart0_printf("\n+ New SPI data size = %u-byte(s)\n\n", tmp); neorv32_spi_setup(spi_prsc, clk_phase, clk_pol, data_size); spi_configured = 1; // SPI is configured now spi_size = tmp; } /**********************************************************************//** * Read (dump) flash **************************************************************************/ void flash_read(void) { char terminal_buffer[9]; uint32_t tmp, addr, channel, num_addr_bytes; if (spi_configured == 0) { neorv32_uart0_printf("SPI module not configured yet! Use 'setup' to configure SPI module.\n"); return; } // configure 8-bit SPI mode tmp = NEORV32_SPI.CTRL; tmp &= ~(0x03 << SPI_CTRL_SIZE0); NEORV32_SPI.CTRL = tmp; neorv32_uart0_printf("Warning! SPI size configuration has been overridden!\n"); // how many address bytes? while (1) { neorv32_uart0_printf("Enter number of address bytes (2,3): "); neorv32_uart0_scan(terminal_buffer, 2, 1); // 1 hex char plus '\0' num_addr_bytes = hexstr_to_uint(terminal_buffer, strlen(terminal_buffer)); if ((num_addr_bytes < 2) || (num_addr_bytes > 3)) { neorv32_uart0_printf("\nInvalid channel selection!\n"); continue; } else { break; } } // chip-select while (1) { neorv32_uart0_printf("\nSelect flash chip-select line [0..7]: "); neorv32_uart0_scan(terminal_buffer, 2, 1); // 1 hex char plus '\0' channel = hexstr_to_uint(terminal_buffer, strlen(terminal_buffer)); if (channel > 7) { neorv32_uart0_printf("\nInvalid channel selection!\n"); continue; } else { break; } } // base address neorv32_uart0_printf("\nEnter base address (8 hex chars): 0x"); neorv32_uart0_scan(terminal_buffer, 9, 1); addr = (uint32_t)hexstr_to_uint(terminal_buffer, strlen(terminal_buffer)); neorv32_uart0_printf("\nPress any key to start. Press any key to stop reading.\n"); while(neorv32_uart0_char_received() == 0); while(1) { if (neorv32_uart0_char_received()) { // abort when key pressed break; } if ((addr & 0x1f) == 0) { neorv32_uart0_printf("\n%x: ", addr); } // read byte neorv32_spi_cs_en((uint8_t)channel); neorv32_spi_trans(SPI_FLASH_CMD_READ); if (num_addr_bytes == 3) { neorv32_spi_trans(addr >> 16); } neorv32_spi_trans(addr >> 8); neorv32_spi_trans(addr >> 0); tmp = neorv32_spi_trans(0); neorv32_spi_cs_dis((uint8_t)channel); aux_print_hex_byte((uint8_t)tmp); neorv32_uart0_putc(' '); addr++; } neorv32_uart0_printf("\n"); spi_configured = 0; } /**********************************************************************//** * Write flash **************************************************************************/ void flash_write(void) { neorv32_uart0_printf("work-in-progress\n"); return; char terminal_buffer[9], rx_data; uint32_t tmp, addr, channel, num_data_bytes, num_addr_bytes; int res; if (spi_configured == 0) { neorv32_uart0_printf("SPI module not configured yet! Use 'setup' to configure SPI module.\n"); return; } // configure 8-bit SPI mode tmp = NEORV32_SPI.CTRL; tmp &= ~(0x03 << SPI_CTRL_SIZE0); NEORV32_SPI.CTRL = tmp; neorv32_uart0_printf("Warning! SPI size configuration has been overridden!\n"); // how many address bytes? while (1) { neorv32_uart0_printf("Enter number of address bytes (2,3): "); neorv32_uart0_scan(terminal_buffer, 2, 1); // 1 hex char plus '\0' num_addr_bytes = hexstr_to_uint(terminal_buffer, strlen(terminal_buffer)); if ((num_addr_bytes < 2) || (num_addr_bytes > 3)) { neorv32_uart0_printf("\nInvalid channel selection!\n"); continue; } else { break; } } // how many bytes? neorv32_uart0_printf("\nEnter total number of bytes to write (%u hex chars): ", num_addr_bytes*2); neorv32_uart0_scan(terminal_buffer, num_addr_bytes*2+1, 1); // 1 hex char plus '\0' num_data_bytes = hexstr_to_uint(terminal_buffer, strlen(terminal_buffer)); // chip-select while (1) { neorv32_uart0_printf("\nSelect flash chip-select line [0..7]: "); neorv32_uart0_scan(terminal_buffer, 2, 1); // 1 hex char plus '\0' channel = hexstr_to_uint(terminal_buffer, strlen(terminal_buffer)); if (channel > 7) { neorv32_uart0_printf("\nInvalid channel selection!\n"); continue; } else { break; } } // base address neorv32_uart0_printf("\nEnter base address (8 hex chars): 0x"); neorv32_uart0_scan(terminal_buffer, 9, 1); addr = (uint32_t)hexstr_to_uint(terminal_buffer, strlen(terminal_buffer)); // start! neorv32_uart0_printf("\nSend raw data via UART (%u bytes)...\n", num_data_bytes); while (neorv32_uart0_tx_busy()); // clear UART0 FIFOs neorv32_uart0_disable(); neorv32_uart0_enable(); while (num_data_bytes) { // write enable neorv32_spi_cs_en((uint8_t)channel); neorv32_spi_trans(SPI_FLASH_CMD_WREN); neorv32_spi_cs_dis((uint8_t)channel); // get new UART data while(1) { res = neorv32_uart0_getc_safe(&rx_data); if (res == -1) { continue; } if (res == 0) { break; } else { neorv32_uart0_printf("UART transmission error (%i)!\n", res); return; } } // write byte neorv32_spi_cs_en((uint8_t)channel); neorv32_spi_trans(SPI_FLASH_CMD_WRITE); if (num_addr_bytes == 3) { neorv32_spi_trans(addr >> 16); } neorv32_spi_trans(addr >> 8); neorv32_spi_trans(addr >> 0); neorv32_spi_trans((uint32_t)rx_data); neorv32_spi_cs_dis((uint8_t)channel); // check status register while (1) { neorv32_spi_cs_en((uint8_t)channel); neorv32_spi_trans(SPI_FLASH_CMD_READ_SR); tmp = neorv32_spi_trans(0); neorv32_spi_cs_dis((uint8_t)channel); if ((tmp & 0x01) == 0) { // write-in-progress flag cleared? break; } } addr++; num_data_bytes--; } neorv32_uart0_printf("\n"); spi_configured = 0; } /**********************************************************************//** * Helper function to convert N hex chars string into uint32_T * * @param[in,out] buffer Pointer to array of chars to convert into number. * @param[in,out] length Length of the conversion string. * @return Converted number. **************************************************************************/ uint32_t hexstr_to_uint(char *buffer, uint8_t length) { uint32_t res = 0, d = 0; char c = 0; while (length--) { c = *buffer++; if ((c >= '0') && (c <= '9')) d = (uint32_t)(c - '0'); else if ((c >= 'a') && (c <= 'f')) d = (uint32_t)((c - 'a') + 10); else if ((c >= 'A') && (c <= 'F')) d = (uint32_t)((c - 'A') + 10); else d = 0; res = res + (d << (length*4)); } return res; } /**********************************************************************//** * Print HEX byte. * * @param[in] byte Byte to be printed as 2-cahr hex value. **************************************************************************/ void aux_print_hex_byte(uint8_t byte) { static const char symbols[] = "0123456789abcdef"; neorv32_uart0_putc(symbols[(byte >> 4) & 0x0f]); neorv32_uart0_putc(symbols[(byte >> 0) & 0x0f]); }