URL
https://opencores.org/ocsvn/neorv32/neorv32/trunk
Subversion Repositories neorv32
[/] [neorv32/] [trunk/] [sw/] [lib/] [source/] [neorv32_cpu.c] - Rev 74
Compare with Previous | Blame | View Log
// ################################################################################################# // # << NEORV32: neorv32_cpu.c - CPU Core Functions HW Driver >> # // # ********************************************************************************************* # // # BSD 3-Clause License # // # # // # Copyright (c) 2022, Stephan Nolting. All rights reserved. # // # # // # Redistribution and use in source and binary forms, with or without modification, are # // # permitted provided that the following conditions are met: # // # # // # 1. Redistributions of source code must retain the above copyright notice, this list of # // # conditions and the following disclaimer. # // # # // # 2. Redistributions in binary form must reproduce the above copyright notice, this list of # // # conditions and the following disclaimer in the documentation and/or other materials # // # provided with the distribution. # // # # // # 3. Neither the name of the copyright holder nor the names of its contributors may be used to # // # endorse or promote products derived from this software without specific prior written # // # permission. # // # # // # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS # // # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # // # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # // # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # // # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # // # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED # // # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # // # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # // # OF THE POSSIBILITY OF SUCH DAMAGE. # // # ********************************************************************************************* # // # The NEORV32 Processor - https://github.com/stnolting/neorv32 (c) Stephan Nolting # // ################################################################################################# /**********************************************************************//** * @file neorv32_cpu.c * @brief CPU Core Functions HW driver source file. **************************************************************************/ #include "neorv32.h" #include "neorv32_cpu.h" /**********************************************************************//** * Unavailable extensions warning. **************************************************************************/ #if defined __riscv_d || (__riscv_flen == 64) #error Double-precision floating-point extension <D/Zdinx> is NOT supported! #endif #if (__riscv_xlen > 32) #error Only 32-bit <rv32> is supported! #endif #ifdef __riscv_fdiv #warning Floating-point division instruction <FDIV> is NOT supported yet! #endif #ifdef __riscv_fsqrt #warning Floating-point square root instruction <FSQRT> is NOT supported yet! #endif /**********************************************************************//** * >Private< helper functions. **************************************************************************/ static int __neorv32_cpu_irq_id_check(uint8_t irq_sel); static uint32_t __neorv32_cpu_pmp_cfg_read(uint32_t index); static void __neorv32_cpu_pmp_cfg_write(uint32_t index, uint32_t data); /**********************************************************************//** * Private function: Check IRQ id. * * @param[in] irq_sel CPU interrupt select. See #NEORV32_CSR_MIE_enum. * @return 0 if success, 1 if error (invalid irq_sel). **************************************************************************/ static int __neorv32_cpu_irq_id_check(uint8_t irq_sel) { if ((irq_sel == CSR_MIE_MSIE) || (irq_sel == CSR_MIE_MTIE) || (irq_sel == CSR_MIE_MEIE) || ((irq_sel >= CSR_MIE_FIRQ0E) && (irq_sel <= CSR_MIE_FIRQ15E))) { return 0; } else { return 1; } } /**********************************************************************//** * Enable specific CPU interrupt. * * @note Interrupts have to be globally enabled via neorv32_cpu_eint(void), too. * * @param[in] irq_sel CPU interrupt select. See #NEORV32_CSR_MIE_enum. * @return 0 if success, 1 if error (invalid irq_sel). **************************************************************************/ int neorv32_cpu_irq_enable(uint8_t irq_sel) { // check IRQ id if (__neorv32_cpu_irq_id_check(irq_sel)) { return 1; } register uint32_t mask = (uint32_t)(1 << irq_sel); asm volatile ("csrrs zero, mie, %0" : : "r" (mask)); return 0; } /**********************************************************************//** * Disable specific CPU interrupt. * * @param[in] irq_sel CPU interrupt select. See #NEORV32_CSR_MIE_enum. * @return 0 if success, 1 if error (invalid irq_sel). **************************************************************************/ int neorv32_cpu_irq_disable(uint8_t irq_sel) { // check IRQ id if (__neorv32_cpu_irq_id_check(irq_sel)) { return 1; } register uint32_t mask = (uint32_t)(1 << irq_sel); asm volatile ("csrrc zero, mie, %0" : : "r" (mask)); return 0; } /**********************************************************************//** * Get cycle count from cycle[h]. * * @note The cycle[h] CSR is shadowed copy of the mcycle[h] CSR. * * @return Current cycle counter (64 bit). **************************************************************************/ uint64_t neorv32_cpu_get_cycle(void) { union { uint64_t uint64; uint32_t uint32[sizeof(uint64_t)/sizeof(uint32_t)]; } cycles; register uint32_t tmp1, tmp2, tmp3; while(1) { tmp1 = neorv32_cpu_csr_read(CSR_CYCLEH); tmp2 = neorv32_cpu_csr_read(CSR_CYCLE); tmp3 = neorv32_cpu_csr_read(CSR_CYCLEH); if (tmp1 == tmp3) { break; } } cycles.uint32[0] = tmp2; cycles.uint32[1] = tmp3; return cycles.uint64; } /**********************************************************************//** * Set mcycle[h] counter. * * @param[in] value New value for mcycle[h] CSR (64-bit). **************************************************************************/ void neorv32_cpu_set_mcycle(uint64_t value) { union { uint64_t uint64; uint32_t uint32[sizeof(uint64_t)/sizeof(uint32_t)]; } cycles; cycles.uint64 = value; neorv32_cpu_csr_write(CSR_MCYCLE, 0); neorv32_cpu_csr_write(CSR_MCYCLEH, cycles.uint32[1]); neorv32_cpu_csr_write(CSR_MCYCLE, cycles.uint32[0]); } /**********************************************************************//** * Get retired instructions counter from instret[h]. * * @note The instret[h] CSR is shadowed copy of the instret[h] CSR. * * @return Current instructions counter (64 bit). **************************************************************************/ uint64_t neorv32_cpu_get_instret(void) { union { uint64_t uint64; uint32_t uint32[sizeof(uint64_t)/sizeof(uint32_t)]; } cycles; register uint32_t tmp1, tmp2, tmp3; while(1) { tmp1 = neorv32_cpu_csr_read(CSR_INSTRETH); tmp2 = neorv32_cpu_csr_read(CSR_INSTRET); tmp3 = neorv32_cpu_csr_read(CSR_INSTRETH); if (tmp1 == tmp3) { break; } } cycles.uint32[0] = tmp2; cycles.uint32[1] = tmp3; return cycles.uint64; } /**********************************************************************//** * Set retired instructions counter minstret[h]. * * @param[in] value New value for mcycle[h] CSR (64-bit). **************************************************************************/ void neorv32_cpu_set_minstret(uint64_t value) { union { uint64_t uint64; uint32_t uint32[sizeof(uint64_t)/sizeof(uint32_t)]; } cycles; cycles.uint64 = value; neorv32_cpu_csr_write(CSR_MINSTRET, 0); neorv32_cpu_csr_write(CSR_MINSTRETH, cycles.uint32[1]); neorv32_cpu_csr_write(CSR_MINSTRET, cycles.uint32[0]); } /**********************************************************************//** * Get current system time from time[h] CSR. * * @note This function requires the MTIME system timer to be implemented. * * @return Current system time (64 bit). **************************************************************************/ uint64_t neorv32_cpu_get_systime(void) { union { uint64_t uint64; uint32_t uint32[sizeof(uint64_t)/sizeof(uint32_t)]; } cycles; register uint32_t tmp1, tmp2, tmp3; while(1) { tmp1 = neorv32_cpu_csr_read(CSR_TIMEH); tmp2 = neorv32_cpu_csr_read(CSR_TIME); tmp3 = neorv32_cpu_csr_read(CSR_TIMEH); if (tmp1 == tmp3) { break; } } cycles.uint32[0] = tmp2; cycles.uint32[1] = tmp3; return cycles.uint64; } /**********************************************************************//** * Delay function using busy wait. * * @note This function uses MTIME as time base. A simple ASM loop * is used as fall back if system timer is not implemented. * * @warning Delay time might be less precise if M extensions is not available * (especially if MTIME unit is not available). * * @param[in] time_ms Time in ms to wait (unsigned 32-bit). **************************************************************************/ void neorv32_cpu_delay_ms(uint32_t time_ms) { uint32_t clock = NEORV32_SYSINFO.CLK; // clock ticks per second clock = clock / 1000; // clock ticks per ms register uint64_t wait_cycles = ((uint64_t)clock) * ((uint64_t)time_ms); register uint64_t tmp = 0; // MTIME available? if (NEORV32_SYSINFO.SOC & (1 << SYSINFO_SOC_IO_MTIME)) { // use MTIME machine timer tmp = neorv32_mtime_get_time() + wait_cycles; while(1) { if (neorv32_mtime_get_time() >= tmp) { break; } } } else { // use ASM loop // warning! not really precise (especially if M extensions is not available)! const uint32_t loop_cycles_c = 16; // clock cycles per iteration of the ASM loop register uint32_t iterations = (uint32_t)(wait_cycles / loop_cycles_c); // M (div) extension would be nice here! asm volatile (" .balign 4 \n" // make sure this is 32-bit aligned " __neorv32_cpu_delay_ms_start: \n" " beq %[cnt_r], zero, __neorv32_cpu_delay_ms_end \n" // 3 cycles (not taken) " beq %[cnt_r], zero, __neorv32_cpu_delay_ms_end \n" // 3 cycles (never taken) " addi %[cnt_w], %[cnt_r], -1 \n" // 2 cycles " nop \n" // 2 cycles " j __neorv32_cpu_delay_ms_start \n" // 6 cycles " __neorv32_cpu_delay_ms_end: " : [cnt_w] "=r" (iterations) : [cnt_r] "r" (iterations)); } } /**********************************************************************//** * Physical memory protection (PMP): Get number of available regions. * * @warning This function overrides all available PMPCFG* CSRs! * @note This function requires the PMP CPU extension. * * @return Returns number of available PMP regions. **************************************************************************/ uint32_t neorv32_cpu_pmp_get_num_regions(void) { // PMP implemented at all? if ((neorv32_cpu_csr_read(CSR_MXISA) & (1<<CSR_MXISA_PMP)) == 0) { return 0; } // try setting R bit in all PMPCFG CSRs const uint32_t mask = 0x01010101; __neorv32_cpu_pmp_cfg_write(0, mask); __neorv32_cpu_pmp_cfg_write(1, mask); __neorv32_cpu_pmp_cfg_write(2, mask); __neorv32_cpu_pmp_cfg_write(3, mask); // sum up all written ones (only available PMPCFG* CSRs/entries will return =! 0) union { uint32_t uint32; uint8_t uint8[sizeof(uint32_t)/sizeof(uint8_t)]; } cnt; cnt.uint32 = 0; cnt.uint32 += __neorv32_cpu_pmp_cfg_read(0) & mask; cnt.uint32 += __neorv32_cpu_pmp_cfg_read(1) & mask; cnt.uint32 += __neorv32_cpu_pmp_cfg_read(2) & mask; cnt.uint32 += __neorv32_cpu_pmp_cfg_read(3) & mask; // sum up bytes uint32_t num_regions = 0; num_regions += (uint32_t)cnt.uint8[0]; num_regions += (uint32_t)cnt.uint8[1]; num_regions += (uint32_t)cnt.uint8[2]; num_regions += (uint32_t)cnt.uint8[3]; return num_regions; } /**********************************************************************//** * Physical memory protection (PMP): Get minimal region size (granularity). * * @warning This function overrides PMPCFG0[0] and PMPADDR0 CSRs! * @note This function requires the PMP CPU extension. * * @return Returns minimal region size in bytes. Returns zero on error. **************************************************************************/ uint32_t neorv32_cpu_pmp_get_granularity(void) { // PMP implemented at all? if ((neorv32_cpu_csr_read(CSR_MXISA) & (1<<CSR_MXISA_PMP)) == 0) { return 0; } neorv32_cpu_csr_write(CSR_PMPCFG0, neorv32_cpu_csr_read(CSR_PMPCFG0) & 0xffffff00); // disable entry 0 neorv32_cpu_csr_write(CSR_PMPADDR0, -1UL); // try to set all bits uint32_t tmp = neorv32_cpu_csr_read(CSR_PMPADDR0); // no bits set at all -> fail if (tmp == 0) { return 0; } // count trailing zeros uint32_t i = 2; while(1) { if (tmp & 1) { break; } tmp >>= 1; i++; } return 1<<i; } /**********************************************************************//** * Physical memory protection (PMP): Configure region. * * @warning Only TOR mode is supported. * * @note This function requires the PMP CPU extension. * @note Only use available PMP regions. Check before using neorv32_cpu_pmp_get_regions(void). * * @param[in] index Region number (index, 0..PMP_NUM_REGIONS-1). * @param[in] base Region base address. * @param[in] config Region configuration byte (see #NEORV32_PMPCFG_ATTRIBUTES_enum). * @return Returns 0 on success, 1 on failure. **************************************************************************/ int neorv32_cpu_pmp_configure_region(uint32_t index, uint32_t base, uint8_t config) { if ((index > 15) || ((neorv32_cpu_csr_read(CSR_MXISA) & (1<<CSR_MXISA_PMP)) == 0)) { return 1; } // set base address base = base >> 2; switch(index & 0xf) { case 0: neorv32_cpu_csr_write(CSR_PMPADDR0, base); break; case 1: neorv32_cpu_csr_write(CSR_PMPADDR1, base); break; case 2: neorv32_cpu_csr_write(CSR_PMPADDR2, base); break; case 3: neorv32_cpu_csr_write(CSR_PMPADDR3, base); break; case 4: neorv32_cpu_csr_write(CSR_PMPADDR4, base); break; case 5: neorv32_cpu_csr_write(CSR_PMPADDR5, base); break; case 6: neorv32_cpu_csr_write(CSR_PMPADDR6, base); break; case 7: neorv32_cpu_csr_write(CSR_PMPADDR7, base); break; case 8: neorv32_cpu_csr_write(CSR_PMPADDR8, base); break; case 9: neorv32_cpu_csr_write(CSR_PMPADDR9, base); break; case 10: neorv32_cpu_csr_write(CSR_PMPADDR10, base); break; case 11: neorv32_cpu_csr_write(CSR_PMPADDR11, base); break; case 12: neorv32_cpu_csr_write(CSR_PMPADDR12, base); break; case 13: neorv32_cpu_csr_write(CSR_PMPADDR13, base); break; case 14: neorv32_cpu_csr_write(CSR_PMPADDR14, base); break; case 15: neorv32_cpu_csr_write(CSR_PMPADDR15, base); break; default: break; } // pmpcfg register index uint32_t pmpcfg_index = index >> 4; // 4 entries per pmpcfg csr // get current configuration uint32_t tmp = __neorv32_cpu_pmp_cfg_read(pmpcfg_index); // clear old configuration uint32_t config_mask = (((uint32_t)0xFF) << ((index%4)*8)); tmp = tmp & (~config_mask); // set configuration uint32_t config_new = ((uint32_t)config) << ((index%4)*8); tmp = tmp | config_new; __neorv32_cpu_pmp_cfg_write(pmpcfg_index, tmp); // check if update was successful tmp = __neorv32_cpu_pmp_cfg_read(pmpcfg_index); if ((tmp & config_mask) == config_new) { return 0; } else { return 2; } } /**********************************************************************//** * Internal helper function: Read PMP configuration register 0..15 * * @warning This function requires the PMP CPU extension. * * @param[in] index PMP CFG configuration register ID (0..15). * @return PMP CFG read data. **************************************************************************/ static uint32_t __neorv32_cpu_pmp_cfg_read(uint32_t index) { uint32_t tmp = 0; switch(index & 3) { case 0: tmp = neorv32_cpu_csr_read(CSR_PMPCFG0); break; case 1: tmp = neorv32_cpu_csr_read(CSR_PMPCFG1); break; case 2: tmp = neorv32_cpu_csr_read(CSR_PMPCFG2); break; case 3: tmp = neorv32_cpu_csr_read(CSR_PMPCFG3); break; default: break; } return tmp; } /**********************************************************************//** * Internal helper function: Write PMP configuration register 0..4 * * @warning This function requires the PMP CPU extension. * * @param[in] index PMP CFG configuration register ID (0..4). * @param[in] data PMP CFG write data. **************************************************************************/ static void __neorv32_cpu_pmp_cfg_write(uint32_t index, uint32_t data) { switch(index & 3) { case 0: neorv32_cpu_csr_write(CSR_PMPCFG0, data); break; case 1: neorv32_cpu_csr_write(CSR_PMPCFG1, data); break; case 2: neorv32_cpu_csr_write(CSR_PMPCFG2, data); break; case 3: neorv32_cpu_csr_write(CSR_PMPCFG3, data); break; default: break; } } /**********************************************************************//** * Hardware performance monitors (HPM): Get number of available HPM counters. * * @warning This function overrides all available mhpmcounter* CSRs. * * @return Returns number of available HPM counters (0..29). **************************************************************************/ uint32_t neorv32_cpu_hpm_get_counters(void) { // HPMs implemented at all? if ((neorv32_cpu_csr_read(CSR_MXISA) & (1<<CSR_MXISA_ZIHPM)) == 0) { return 0; } // inhibit all HPM counters uint32_t tmp = neorv32_cpu_csr_read(CSR_MCOUNTINHIBIT); tmp |= 0xfffffff8; neorv32_cpu_csr_write(CSR_MCOUNTINHIBIT, tmp); // try setting all mhpmcounter* CSRs to 1 neorv32_cpu_csr_write(CSR_MHPMCOUNTER3, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER4, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER5, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER6, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER7, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER8, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER9, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER10, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER11, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER12, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER13, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER14, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER15, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER16, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER17, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER18, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER19, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER20, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER21, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER22, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER23, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER24, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER25, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER26, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER27, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER28, 1); neorv32_cpu_csr_write(CSR_MHPMCOUNTER29, 1); // sum up all written ones (only available HPM counter CSRs will return =! 0) uint32_t num_hpm_cnts = 0; num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER3); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER4); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER5); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER6); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER7); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER8); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER9); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER10); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER11); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER12); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER13); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER14); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER15); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER16); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER17); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER18); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER19); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER20); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER21); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER22); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER23); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER24); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER25); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER26); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER27); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER28); num_hpm_cnts += neorv32_cpu_csr_read(CSR_MHPMCOUNTER29); return num_hpm_cnts; } /**********************************************************************//** * Hardware performance monitors (HPM): Get total counter width * * @warning This function overrides mhpmcounter3[h] CSRs. * * @return Size of HPM counter bits (1-64, 0 if not implemented at all). **************************************************************************/ uint32_t neorv32_cpu_hpm_get_size(void) { uint32_t tmp, size, i; // HPMs implemented at all? if ((neorv32_cpu_csr_read(CSR_MXISA) & (1<<CSR_MXISA_ZIHPM)) == 0) { return 0; } // inhibit auto-update of HPM counter3 tmp = neorv32_cpu_csr_read(CSR_MCOUNTINHIBIT); tmp |= 1 << CSR_MCOUNTINHIBIT_HPM3; neorv32_cpu_csr_write(CSR_MCOUNTINHIBIT, tmp); neorv32_cpu_csr_write(CSR_MHPMCOUNTER3, 0xffffffff); neorv32_cpu_csr_write(CSR_MHPMCOUNTER3H, 0xffffffff); if (neorv32_cpu_csr_read(CSR_MHPMCOUNTER3H) == 0) { size = 0; tmp = neorv32_cpu_csr_read(CSR_MHPMCOUNTER3); } else { size = 32; tmp = neorv32_cpu_csr_read(CSR_MHPMCOUNTER3H); } for (i=0; i<32; i++) { if (tmp & (1<<i)) { size++; } } return size; }